Introduction

Petroleum refining plays an important role in our lives. Most transportation vehicles are powered by refined products such as gasoline, diesel, aviation turbine kerosene (ATK) and fuel oil. Petroleum has remained an important aspect of our lives and will do so for the next four or five decades. The fuels that are derived from petroleum supply more than half of the world’s total supply of energy. Gasoline, kerosene, and diesel oil provide fuel for automobiles, tractors, trucks, aircraft, and ships. Fuel oil and natural gas are used to heat homes and commercial buildings, as well as to generate electricity. Petroleum products are the basic materials used for the manufacture of synthetic fibers for clothing and in plastics, paints, fertilizers, insecticides, soaps, and synthetic rubber. The uses of petroleum as a source of raw material in manufacturing are central to the functioning of modern industry.

Composition and Classification of Crude Oils

Crude oil is a complex liquid mixture made up of a vast number of hydrocarbon compounds that consist mainly of carbon and hydrogen in differing proportions. In addition, small amounts of organic compounds containing sulfur, oxygen, nitrogen and metals such as vanadium, nickel, iron and copper are also present (See Table below).

<table>
<thead>
<tr>
<th>Element</th>
<th>Composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>83.0–87.0</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>10.0–14.0</td>
</tr>
<tr>
<td>Sulphur</td>
<td>0.05–6.0</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.1–0.2</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.05–2.0</td>
</tr>
<tr>
<td>Ni</td>
<td><120 ppm</td>
</tr>
<tr>
<td>V</td>
<td><1200 ppm</td>
</tr>
</tbody>
</table>

There are three main classes of hydrocarbons. These are based on the type of carbon–carbon bonds present. These classes are:

- Saturated hydrocarbons contain only carbon–carbon single bonds. They are known as paraffins (or alkanes) if they are acyclic, or naphthenes (or cycloalkanes) if they are cyclic.
- Unsaturated hydrocarbons contain carbon–carbon multiple bonds (double, triple or both). These are unsaturated because they contain fewer hydrogens per carbon than paraffins. Unsaturated hydrocarbons are known as olefins. Those that contain a carbon–carbon double bond are called alkenes, while those with carbon–carbon triple bond are alkynes.
- Aromatic hydrocarbons are special class of cyclic compounds related in structure to benzene.
1- Paraffins

General formula: C_nH_{2n+2} (n is a whole number, usually from 1 to 20), straight or branched-chain molecules, can be gasses or liquids at room temperature depending upon the molecule. For example, methane, ethane, propane, butane, isobutane, pentane, hexane

![Butane and Pentane](image)

2- Olefins (also known as alkenes)

General formula: C_nH_{2n} (n is a whole number, usually from 1 to 20), linear or branched chain molecules containing one carboncarbon double-bond, can be liquid or gas. For example: ethylene, butene, isobutene

![Ethylene, Propylene, Acetylene](image)

3- Naphthenes (cycloalkanes)

General formula: C_nH_{2n} (n is a whole number usually from 1 to 20), ringed structures with one or more rings, rings contain only single bonds between the carbon atoms, typically liquids at room temperature. For example: cyclohexane, methyl cyclopentane

![Cyclohexane](image)

4- Aromatics

General formula: $C_6H_5 - Y$ (Y is a longer, straight molecule that connects to the benzene ring), ringed structures with one or more rings, rings contain six carbon atoms, with alternating double and single bonds between the carbons, typically liquids. For examples benzene, naphthalene
Crude oils from various origins contain different types of aromatic compounds in different concentrations. Light petroleum fractions contain mono-aromatics, which have one benzene ring with one or more of the hydrogen atoms substituted by another atom or alkyl groups. Examples of these compounds are toluene and xylene.

More complex aromatic compounds consist of a number of benzene rings. These are known as polynuclear aromatic compounds. They are found in the heavy petroleum cuts, and their presence is undesirable because they cause catalyst deactivation and coke deposition during processing, besides causing environmental problems when they are present in diesel and fuel oils. Examples of polynuclear aromatic compounds are shown below.

5- Sulfur Compounds

The Sulfur content of crude oils varies from less than 0.05 to more than 10 wt% but generally falls in the range 1–4 wt%. Crude oil with less than 1 wt% sulfur is referred to as low sulfur or sweet, and that with more than 1 wt% sulfur is referred to as high sulfur or sour. Crude oils
contain sulfur heteroatoms in the form of elemental sulfur S, dissolved hydrogen sulphide \(\text{H}_2\text{S} \), carbonyl sulphide \(\text{COS} \), inorganic forms and most importantly organic forms, in which sulfur atoms are positioned within the organic hydrocarbon molecules. Sulfur compounds lead to environmental pollution, decreases the life of machinery, corrodes of pipes, machines and equipment, affecting the additives used for the purpose of increasing the octane number, reduce the activity of Tetra Ethyl Lead (TEL) added to gasoline. As a result, the engine metal will erode and leads to destruct the metallic parts. Also, their emissions are very dangerous to human safety and environment. In addition, these impurities cause catalyst poisoning and reduce the catalyst activity. Sulfur containing constituents of crude oils vary from simple mercaptans, also known as thiols, to sulphides and polycyclic sulphides (Mercaptans (R–SH), sulphides (R–S–R'), disulphides (R–S–S–R'), Thiophenes)

6- Nitrogen Compounds

Crude oils contain very low amounts of nitrogen compounds, less than 1%, The nitrogen compounds in crude oils may be classified as basic or non-basic. Basic nitrogen compounds consist of pyridines. The greater part of the nitrogen in crude oils is the non-basic nitrogen compounds, which are generally of pyrrole types. The decomposition of nitrogen compounds in catalytic cracking and hydrocracking processes forms ammonia and cyanides that can cause corrosion.

7- Oxygen Compounds

Less than 1% (found in organic compounds such as carbon dioxide, phenols, ketones, carboxylic acids) occur in crude oils in varying amounts.
8- Metals Compounds
Metallic compounds exist in all crude oil types in very small amounts. Their concentration must be reduced to avoid operational problems and to prevent them from contaminating the products. Metals affect many upgrading processes. They cause poisoning to the catalysts used for hydroprocessing and cracking. Even minute amounts of metals (iron, nickel and vanadium) in the feedstock to the catalytic cracker affect the activity of the catalyst and result in increased gas and coke formation and reduced gasoline yields. Burning heavy fuel oils in refinery furnaces and boilers can leave deposits of vanadium oxide and nickel oxide in furnace boxes, ducts, and tubes. It is also desirable to remove trace amounts of arsenic, vanadium, and nickel prior to processing as they can poison certain catalysts.

9- Asphaltenes and Resins Compounds
Asphaltenes are dark brown friable solids that have no definite melting point and usually leave carbonaceous residue on heating. They are made up of condensed polynuclear aromatic layers linked by saturated links. The presence of high amounts of asphaltenes in crude oil can create tremendous problems in production because they tend to precipitate inside the pores of rock formations, well heads and surface processing equipments. They may also lead to transportation problems because they contribute to gravity and viscosity increases of crude oils.

Resins are polar molecules have high molecular weight, which are insoluble in liquid propane but soluble in n-heptane. It is believed that the resins are responsible for dissolving and stabilizing the solid asphaltenene molecules in petroleum.