

Air-Conditioning & Refrigeration BSc Lecture 1 Course weekly Outline & Ch.1 (Introduction to Air conditioning & Refrigeration)

Tikrit university\ engineering college\ mechanical dept.

Air-Conditioning & Refrigeration

FLOW UP OF IMPLEMENTATION CELLI PASS PLAY

Course Instructor	Prof. Dr.	Maki Hag	Zaidan			
E-mail	makihajz	aidan@tu.	edu.iq			
Title	Air-Cond	itioning & I	Refrigeratio	on		Eng Lipes
Course		0				
Coordinator						
	To Under	stand the	basic conc	epts of Air	-	1
Course	Conditior	Conditioning and recognize the various types of				
Objective	Air-Cond	itioning pro	oblems end	countered	in	
-	practice.					
Course	Theoretical and experimental cores					
Description						
						-
Taxthook	(Air Conditioning and Defrigeration, Division					
TEXIDOOK	Eirct edition McGrow Hill 1982)					
			avv-1 m, 190	55)		
References	(Refriger	ation and A	Air-Conditio	onina. By S	Stoecher.	
	First edition, McGraw-Hill, 2006)					
		-,	,	- /		
	Term	Laborat	Quizzes	Project	Final	
Course	Tests	ory			Exam	
Assessment	As	As	As 5%)		As (50%)	
	(30%)	(15%)				
	The stude	ents can b	e able to M	lodel engi	neering	
	problems	and solve	them in a	systemati	c manner	
General Notes						

Course weekly Outline	week	Date	Topics Covered	Lab. Experiment	Notes	
				Assignments		
	1	6/12/2020	Introduction to Air			
			Conditioning			
	2	13/12/2020	Calculation of relative			Ly Ly Roals
			humidity			
	3	20/12/2020	Air Conditioning processes			
	4	27/12/2020	humidification and			
			dehumidification.			
	5	3/1/2021	Air mixing and air supply			
			condition			
	6	19/1/2021	Overall heat transfer			
			Coefficient calculation and			
			wall surface temperature			
			calculation			
	7	16/1/2021	Comfortable condition			
	8	23/1/2021	Design temperature and			
			inside room temperature			
		00/4/0004				
	9	30/1/2021	Heating load Calculation			
	10	6/2/2021	Heat loss through building			
			structure, Infiltration and			
			space heating			
	11	13/2/2021	Cooling load Calculation,			
			heat sources			
	12	20/2/2021	Heat Gain from solar			
	13	27/2/2021	Ventilation air and other			
			sources			
	14	5/3/2021	Fluid flow through ducts,			3
			duct design			
	15	12/3/2021	Air distribution			
	End Course Exam					

COURSE WEEKLY OUTLINE

week	Date	Topics Covered	Lab. Experiment Assignments	Notes
16	11/4/2021	Duct design by Pressure drop method		
17	18/4/2021	Duct design by pressure drop and regain method		
18	25/4/2021	Duct design by velocity method		
19	2/5/2021	Fans performance		
20	9/5/2021	Fan system characteristics curves		
21	16/5/2021	Fan similarity laws		
22	23/5/2021	Friction losses in pipes		
23	30/5/2021	Pipe design		
24	6/6/2021	Pumps performance		
25	13/6/2021	Refrigeration cycle		
26	20/6/2021	heat pump cycle		
27	27/6/2021	Refrigerant systems		
28	3/7/2021	Refrigerant equipment's		
29	10/7/2021	Thermally activated absorption technology		
30	17/7/2021	Absorption cycle		
		End Course Exam		

4

2.1- Introduction to Air Conditioning & Refrigeration

2.1.1 MOIST AIR (Psychrometry):

Psychrometry is the science of studying the thermodynamic properties of moist air and the use of these properties to analyze conditions and processes involving moist air, for example.

Air conditioning, Drying processes & Flue gas condensation

Composition of dry Air

Air-Conditioning & Retrigeration

2.1.2 The Ideal Gas Law:

Where p = absolute pressure (Pa) V= volume of gas (m³) m = mass (kg) R = individual gas constant (J/kg, K) T = absolute temperature (K)

This equation (1) can be modified to: $p = \rho \text{ R T}$ (2) where the density $\rho = m / V$(3) The individual gas constant can be expressed with the universal gas constant and the molecular weight of the air as: $R = Ru / M_{gas}$ where M_{gas} = molecular weight of the gas Ru = 8314.51 = universal gas constant (J/(kmol.K))

Dry air is more dense than moist air

Gas	Individual Gas Constant - R	Molecular	
	SI Units (J/kg.K)	(kg/kmol)	
Dry Air	286.9	28.97	
Water vapor	461	18.02	

2.1.3 Pressure in Moist Air - Daltons Law

Daltons Law for moist air can be expressed as:

where p = total pressure of air (Pa) $p_a = \text{partial pressure dry air (Pa)}$ $p_s \text{ or } p_w$ partial pressure water vapor (Pa)

2.1.4 Saturation pressure

The maximum pressure possible before vapor start to condensate at an actual temperature is called the saturation pressure p_{ws} . can be expressed as:

 $p_{ws} = (e^{(77.3450 + 0.0057 T - 7235 / T)}) / T^{8.2}$ (5) where

 p_{ws} = water vapor saturation pressure (Pa)

e = *the constant* 2.718......

T = temperature of the moist air (K)

or using table (page below in document)

Temperature (° _{C)}	Water Vapor Saturation Pressure (Pa)
0	609.9
5	870
10	1225
15	1701
20	2333
25	3160
30	4234

Example - The Saturation Pressure of Water Vapor

The Saturation pressure of water vapor in moist air at 25°C can be calculated as:

Home work

1- Find the Saturation pressure of water vapor in moist air at 30°C from the above equation and compare the it with the result gain from Table 1

2- Find the Saturation pressure of water vapor in moist air at 36°C from the above equation and compare the it with the result gain from Table 1

