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FLUIDS IN RIGID-BODY MOTION: Introduction

« Many fluids such as milk and gasoline are transported in tankers. In an accelerating
tanker, the fluid rushes to the back, and some initial splashing occurs. But then a new
free surface (usually no horizontal) is formed, each fluid particle assumes the same
acceleration, and the entire fluid moves like a rigid body.

* No shear stresses develop within the fluid body since there is no deformation and
thus no change in shape.

* Rigid-body motion of a fluid also occurs when the fluid is contained in a tank that
rotates about an axis.

Consider a differential rectangular fluid element of side lengths dx, dy, and dz in the x-,

y-, and z-directions, respectively, with the z-axis being upward in the vertical direction

(Fig. 3—48). Noting that the differential fluid element behaves like a rigid body, Newton’s

second law of motion for this element can be expressed as:=
£ £ EXAMPLE: UNIFORM LINEAR
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FLUIDS IN RIGID-BODY MOTION: Introduction

same magnitude in all directions, and
thus it is a scalar function. l »

In this section we obtain relations for
the variation of pressure in fluids
moving like a solid body with or
without acceleration in the absence of R 7
any shear stresses (i.e., no motion pgdrdydzs " IE
between fluid layers relative to each |

other). /7

Newton’s 2" law of _—  _ = 4
motion oF =om - a dy

p dP dz —_
om = p dV = p dx dv d: % = ( —— — L axdy

0z 2

Pressure at a given point has the ( aP d-)
‘ + dx dy

dz

Net surface force:

IP dz 9P dz P
oF . = (P e (—(—) dx dy — (P + (_‘T> dx dv = —(,— dx dy dz F=P*A

= 0Z 2 07 2 az

R aP N dP

oFs = ~ dx dy dz and oF g, = —dxdyd:
ox “ ay '



FLUIDS IN RIGID-BODY MOTION: Introduction

Expresslng in vector form:

DFS = oF; ‘1 + OFg\/ + oFg A
jP-»> oP-> OJP- - I
= —((,— i F s A') dx dvdz = —VP dxdvdz bJj, k= unitvectors
dx ady 0Z in x,),z directions

aP - (')I’—. aP -

VRi="— 4 —F ="k i
x 3y J oz Pressure gradient
Body force,
SFy .= —gdmk = —pgdvdyvdzk < Sefnenibel, s gy

SF = 8F; + 8Fy = —(VP + pgk) dx dy dz

From Newton’s 224 Jaw of motion, F=dma=pdxdydz.a

Therefore,

Rigid-body motion of fluids: VP + pegk = —pa
oP- oP- oP-

=i fide—cje [)Q/\ = —/)(11‘7 + u‘; + a.k)
ox ay dz : : )

Expressing in scalar form in three orthogonal directions;
aP dP aP

Accelerating thuds: —=—0g., — = =—pd. and — = —p(g + a,)
A TA 0z -



FLUIDS IN RIGID-BODY MOTION: Case 1: fluid Rest

Special Case 1: Fluids at Rest

For fluids at rest or moving on a straight path at constant velocity, all

components of acceleration are zero, and the relations reduce to

. aP aP dpP
Fluids at rest: —=0, —=0, and —= —pg

X ay dz

The pressure remains constant in any horizontal direction (P is
independent of x and y) and varies only in the vertical direction as
a result of gravity [and thus P = P(z)]. These relations are

applicable for both compressible and incompressible fluids.

(a) ¥ acceleration=0 (b)) acceleration =0

SEe

aP 4 aP aP
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FLUIDS IN RIGID-BODY MOTION: Case 2: Free Fall of a Fluid Body
Special Case 2: Free Fall of a Fluid Body

A freely falling body accelerates under the influence of gravity. When the air
resistance is negligible, the acceleration of the body equals the gravitational
acceleration, and acceleration in any horizontal direction is zero. Therefore,
a,=a,=0and a, = -g.

('*l’ J/, 4’11’

Free-falling fluids: = — =0 > P = constant
oX ay o P
P2:P1+szzge
daP P dP X - _p L 9P
‘ iy |. - = —pa,, and — = —p(g A '~'f-| pd 2 Py =Pi+—==Pi+p(g+a)h
i i 0. (A)Where a,=-g sl P, =P,

(b)Where a,=+g —p P, =P, +2pgh

(a) ¥ acceleration=0 (b) ) acceleration =0

sammaa| 1

h| Liquid. p h| Liqud, p
-a,-g=0 a,-g=0 i o
a,=-g - l Py=P, TP: =P, +2pgh
(1: = =0 (1: =g

The effect of acceleration on the
pressure of a |IQU|d during free (a) Free lall of a (bh) l'p\\'uul acceleration
fall and upward acceleration. liquid of a liquid with @. = +¢




FLUIDS IN RIGID-BODY MOTION: Acceleration on a Straight Path

Acceleration on a Straight Path

.

. B <
- L e}

3m

Example: a container partially filled with a liquid, moving

on straight path with constant acceleration.

a, =0, then Equation 3-43 reduced to:

aP aP P
—=—-—pd,, T = 0, and — = —p(g T a,)
ax ay 0z ‘
P = P 2)

Therefore:

dP =(dP/ox) dx + (dP/dz) dz
dP = —pa,dx — p(g + a.) dz

P, — P, = —pa(x, —x;) — p(g +a, Nz, — 2y)

Taking point 1 to be origin (x1 =0, z1 = 0),

Pressure variation: P = P, — pax — p(g + a.)z

Fl\'c
— surface
Ar |
Ammx i
— N
.
h, Liquid
i ‘
| X
b

Rigid-body motion of a liquid in a
linearly accelerating tank.



FLUIDS IN RIGID-BODY MOTION: Acceleration on a Straight Path

Free

/ surface

Constant
pressure
lines

Setting dP = 0,
Surfaces of constant pressure:

(isobars)

Slope of isobars: Slope =

Lines of constant pressure
(which are the projections of the
surfaces of constant pressure on
the xz-plane) in a linearly
accelerating liquid. Also shown is
the vertical rise.

P'I — PI — —pﬂ'_,.l.l': — .1|.|]' A p{'l{.t: -+ II:.{:: - :|]'

=

By taking P1 = P2,
Vertical rise of surface:

d,

“xl

A*'s — 452 T

o i/

Z. = z-coordinate of liquid’s free surface

o,
= constant
S ®

d < isobar

dx



Relative Equilibrium : Uniform Linear Acceleration

For steady flow, mass in motion no shear stress will occur if there is no relative motion

between adjacent layer of the fluid.

(a) Horizontal Acceleration

Z.F; =m.a

Pd, — P,d, = gzdﬂax +yd,

P, P, _ la
g

¥ ¥
lax
hi_hzz_ _l
g
Or
hl_hz_ﬂx
I g

From fig. the left side is the slop

tan @ = ==
g

Note

The water not pass

ax
—_—

The water pass

b ﬁ\




Relative Equilibrium : Uniform Linear Acceleration

(b) Vertical Acceleration

Z F}, = ma,,

o 53

Pd‘q - '}"hdﬂ — Eh{fﬁﬂ}.
P = yh(l—l— )Upward

Ry
P=yh (1 — —) Downward
g

The general equation for a tank moved in two direction X &Y
ax: The acceleration in X-direction
ay: The acceleration in Y-direction

Ps: The initial pressure and equal to atmospheric pressure when the tank is

opened
s
P=P —yﬁx—y(1 +ﬁ)r
° g g B,
and
anB:
. V87 5
tanf@ = ——
ay+g
B:Cr-é-ul-lrfi.é"

T et 6 gl ) i Al 5 LY

h
Pda
T G
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N — o ar
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x fa ’»")“'477‘177_74
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Examples:
Example ;: The tank is accelerated in the X-direction in such a way that the liquid
surface doesn’t change slope What is the acceleration of the tank?

SO

i1
tangd O —=

aq ¥

K
3 l:l.lf y - l:'l'-'-""t ':-"'I' e L“'ﬁ-*-E _I:j'
2 _ s
- S Oy, =

5 9.81 ?FFE = M

s S

12



Examples:
Example ,:

and the pressure at B,C,D and E.?

Sol.,:

a, a,
P=PO—F—X—}*(1-I-—)}’
g g

P= —D.E*?Blﬂ*%l—D.S*QBIG*(1+§)}’

P=-3120X—-7848Y

At point B
=0, V=023
Py =0—-7848=0.3

Fp=-2.354 Kn/m?

At point C

Imaginary free

@,

1, + g

3.9

= ———7=21.7°
9.81

tanf = —

Since the tank is filled and

PA =Patm

In the below fig. a,=3.9 m/s? ,a,=0.Find the imaginary free liquid surface

3.9.u5
@ +‘“‘(' q“%\

i )

M/ - Q\q

x“‘e; - / /

w\/wa A\ e \vx«\( NS K Wed
P!\ 2 PA.L'N\

e vedemmee ved

X=-1,Y=0.3
P:=0.7656 Kpa

At point D) i
A=-1, Y=-0.7

Po=8.614 Kpa 1m

At ga.rh.!‘ E
=0, V=-0.7 y

e

oil
5=0.8

Im

Pe=5.494 Kpa

¥

il (0,0)

(0,-0.7)




Examples:
Example 5. In the fig a,=9.806 m/s? ,,a,=0.Find the imaginary free liquid surface and the

pressure at A,B,C.? tang = - Sol.:
a, +g
Volume of the initial space = volume of new space o ems
T T0+o806 -
D.3*1.3=x*%=xzzmg 0.3
tand, =—_ - 6, = 24.74°
0.65
X=0.883176m o> 8, Qs . p. 45 ©
h=0.883 m The water passes point A 'f“""ég CERE &)
N = W= Kkend)
tan® =25 h = xtan@.........1 % ’%Mg e \ Mﬂ:..};;.
@no="F>_1 s_13_0883=04168m : U b’a [ - f
== = 1.5 — U = L. T
13 2 ] i ,L—}Q \f\ __{)
0 b )

a a - eall i~ 49

P=PO—F§X—}*(1+§)P 6kt \n;pik ealy) 45° o3I heo-822:
X g\wx(;] =7
. op3K) 3T 'KC a 4
P=-9810X-3810 Y -’ Qo Kve Aiohande ™ X \\
Te : <o wild W 8 )
g A "f\ d_;? 3= W - 3
nd T3
At point A - 3( 14 ﬂ%’]ﬁ
J ==X -
— o : r)o., _ 4
X=-1.3, Y=0.8831 % A (.1.3.0-08831) f
B: (-1.3,5=-0.4168) —
FPa=4.09 K] :
4 a [ C: (0,5=-0.4168) ,
4 5
At point B A : " . Ok
X=-1.3, Y=-0.4168 g
- Y ']
]
Ps=16.842 Kpa [ N S N h
a8
At point € L Water ! - x
AX=0 Y=-0.4168 B L c 5
13m

Pr=4.09 Kpa B -
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FLUIDS IN RIGID-BODY MOTION: Uniform Rotational Vortex flow

Rotation in a Cylindrical Container

Axis of

Consider a vertical cylindrical container partially rotation

filled with a liquid. The container is now rotated < !) @

about its axis at a constant angular velocity of .
After initial transients, the liquid will move as a 2 .
—_— . - = ree
rigid body together with the container. There is m:_; o
no deformation, and thus there can be no shear \
stress, and every fluid particle in the container Bl = ;Z%"“
moves with the same angular velocity.
- h.
~4 | ¢
Equations of motion for rotating fluid; ;
1,
dP : P _ P |
e T il | S dnc s e
ar ¢ o az P ¢t
P = P(r, z) dP = (dP/or)dr + (0P/0z)dz v v v
> y At P=const. , dp=0 =
(IP - l),.(’.)- ‘Ir - l-)‘g’ ([: = |centripetal(RadiaI)AcceIeration p l_ ' R
{ 2 o ‘Wzk =
( :'_gnh( ¢ ’.(U- u,=V'+=m:,~ *" el - i
T Integrating: R'g'.d pOdy e ton °f“’!
dr 8 e liquid in a rotating vertical
i cylindrical container.
Surfaces of constant pressure: 2 = — % + C,

1isobar \” ar:VZIr: (r* w)zlr:r* w 2



FLUIDS IN RIGID-BODY MOTION: Uniform Rotational Vortex flow

: y ol = _al a al
i - The distance of free surface from the Paraboloid: sy (AL l'
= T TR, bottom of container at radius r
=8 L - 212 Kk 'Oga"
Volume of Wi o \\o
rR "R 2 2p2 :
7 G [ w°R paraboloid
V= 2mwzrdr = 2w ‘ (2)' ret /1(.)/' dr = ﬁR’(U_‘ = /l() formed by 23 s
“r=0 Irmo \5 5 the free
V = #R’h. | Original volume of fluid in container At w =0 Surtace (
" | (without rotation) - y
“)3/(-‘ E TN
/l‘ = /l“ = T =
g 2
\{ = wlH Y- h
Free surface: z. = h, i (R~ Zr-) BV"- 2—“ (‘\f\ Ar
Coligor™
O8N . b e
Maximum height difference: Az, WA — Z{R) ZA0) = = R- s
<8 surface '
9 = A:\ max P'
dP = pro- dr — pg dz. Lt P
AT P
l Integratlng: | T P,
p p p(,) 5 : Ps
R L s Ve = ('?—l)—)g'(“—‘) : P
?s‘ WI\% ol 2 I > 2 1 / I : B
_ Wty Wt l Taking point1 to be the origin (r1=0, z1=0); |
T\
AL ’l(rl

U9

e %\% R np

BZvan b V2R ¥y-o

Zs(v=R)= Wo — = (Rl-w\z\ = \no & W.__(L

Zslx=o)= \no— U\O;Q@ -0} = \o —WL&;
B Rz BN - Bo) 2 g W me ~Wgy WERY
R

e _Em

P ——

Pressure variation:

P = /'” e g 1] ('

Note that at a fixed radius, the pressure varies hydrostatically in the
vertical direction, as in a fluid at rest.

For a fixed vertical distance z, the pressure varies with the square of the
radial distance r, increasing from the centerline toward the outer edge.

In any horizontal plane, the pressure difference between the center and
edge of the container of radius R is

AP = pw?R?*/2



FLUIDS IN RIGID-BODY MOTION: Uniform Rotational Vortex flow

Consider liquid rotating about the central axises with angular velocity (w) rad/Sec. The
slope of water caused by normal acceleration (a,)) and the gravitational acceleration (g).

Rotation in a Cylindrical Container <«

a

ool
g

Slope = —
oP€ = ar

dh =224d

g r

Since an=w?r

w?r
ah=2"
g
w?r?
h= 29 +C

al r=o J’I-‘:a

"~ Czo -
<l 7S
. w:r2~ en P oy 3 YA -3 (V5 )y
g
"
P=Po+"‘2’g' —yY

szrz
roladl el adll i =
g

y-dir dads sl il JS yy




Examples:
Example ;: A vessel containing liquid & =1.2 is rotated about a vertical axis. The
pressure at one point 0.6 m radially from the axis is the same as at another point 1.2 m

from the axis and with elevation 0.6 .Calculate the rotational speed.?

m=06m, r=1.2m

|
] 2
- w?r? | g
— Eg : : 0.6 m
|
w3rf :
hy=—2 ] A—
24 |
e
wir: |
hy = — 2 .
29 1
hz-hi=0.6 ”‘T\\
w?r?  w?rd
2 i _ 06 |
29 29

W
0.6 =—1(1.2*=06%)—>w=331/s
2g

2N N = 31E
—_ — ==
{0 a0 2 TPpm

Ar Rest

Irn Solid body motation

o T _
. h = R
L * A



Examples:

Example ,: right —circular cylinder of radius r, and height h, with axis vertical is open at
the top and filled with liquid. At what speed must it rotate so that half the area of the
bottom is exposed.? Sol.,:

ro

|
|
| | "1
} |
"
,«JI : ;
wr? /) | )
h = /) | /
29 Z) i /B
% | V7
w2a? ///‘ | //
h = /.}.\ : / 7
29 / |
mz}ﬁ %)« :
b+ ho = |
2g |
|
2 'r
) ) e l T
ho = — (12 — a?) | Sy = (e dn O E 3
29 K N/
. . o < ‘ r,:n«f‘
Since ma® = %Hrf q - 2
g\ () ’ _—
T, s B | fo-tos 98
a=—= (e T 25— = ) o fawiat, fi
V2 e 2 s =l b
2 2 \‘./O‘U”‘f .ﬂ I}ATUJJ = \¢W 5 I“JpAYahD\'c:J
w1 ik , \/
ho =—\1, —— n&? = [TR Hoee = VP
Eg a 2 T€°H Pt
f 2
_ 2,/gho 0
(o =
T



Example ;: The U tube of fig is rotated about a vertical axis 15 cm to the right of A at
such a speed that the pressure at A is zero gauge. What is the rotational speed.?

Sol.;:
ri=0.15m,
rz=0.75m

_ yw3r
P=p +12

2

At PointA

Pa=P,

2,.2
Yyw=r;

—y(h+0.3)

yo?r{ —yh = yw?rf —yh— 03y
2
w
03 = z—g-(r,_,2 —12)
2
2%981
w=3.3r/s

—2 N =315
_ — _—
W S5 rpm

= (0.75% — 0.15%)

-2

&
o
= ik
I
|
I
Jem :
:
I
I
A Y
T e [T
60 cm ri ’:
I
r2 >

21



Examples:

Example ,: The distance between the centers of the two arms of a U-tube open to the
atmosphere is 25 cm, and the U-tube contains 20-cm-high alcohol in both arms. Now the
U-tube is rotated about the left arm at 4.2 rad/s. Determine the elevation difference
between the fluid surfaces in the two arms.?

SO|.4 o~ fl‘l

Mcm

23 cm

22




Exams and Grading Policy:

**The distribution of Fluid mechanics degree for the students In
Course-1 as following the table:

Final
Exam Report Extra Degree Exam Laboratory
20% 10% 5% 15%
50% ’
©
= —5 | .=
S 32|69 = = N SES'QEEX
DI@I1gE188 = | £ 5| ~ |§2E2:ts
B S | S A ORE=
O
10 | 10 | 7 3 2 2 3 35 7 13| 5 |50
% | % | % | % % % | % % % | % | % | %
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> Note: Seolve—allfive Homeworks
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»In the Fluid book, you have to
read the examples (3.12 and 3.13)
very carefully

Il hope everything Is clear for all

students
s+ Good luck
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