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1.1 Finite Element Method (FEM) 

The finite element method is a numerical method for solving problems of 

engineering and mathematical physics. 

1.1.1 Applications of the Finite Element Method 

The finite element method can be used to analyze both structural and 

nonstructural problems. Typical structural areas include 

1. Stress analysis, including truss and frame analysis, and stress 

concentration problems typically associated with holes, fillets, or other 

changes in geometry in a body. 

2. Buckling. 

3. Vibration analysis. 

Nonstructural problems include 

1. Heat transfer. 

2. Fluid flow, including seepage through porous media. 

3. Distribution of electric or magnetic potential. 

 

1.1.2 Advantages of the Finite Element Method  

This method has a number of advantages that have made it very popular. 

They include the ability to: 

1. Model irregularly shaped bodies quite easily, 

2. Handle general load conditions without difficulty, 

3. Model bodies composed of several different materials because the 

element equations are evaluated individually, 
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4. Handle unlimited numbers and kinds of boundary conditions, 

5. Vary the size of the elements to make it possible to use small elements 

where necessary,  

6. Alter the finite element model relatively easily and cheaply 

7. Include dynamic effects 

8. Handle nonlinear behavior existing with large deformations and nonlinear 

materials   

1.1.3 General steps of the Finite Element Method  

Step 1 Discretize and Select the Element Types. 

Step 2 Select a Displacement Function. 

Step 3 Define the Strain-Displacement and Stress-Strain Relationships 

Step 4 Derive the Element Stiffness Matrix and Equations.  

There are several to do that such as: 

a. Direct Equilibrium Method. 

b. Work or Energy Methods. Used for 2-D and 3-D elements 

 The virtual work method (elastic and inelastic materials) 

 The principle of minimum potential energy (elastic materials) 

c. Methods of Weighted Residuals 

 Galerkin`s method. 

 The collocation method. 

 Least squares method.  

 Sub-domain method. 

Step 5 Assemble the Element Equations to Obtain the Global or Total 

Equations and Introduce Boundary Conditions. 

Step 6 Solve for the Unknown Degrees of Freedom (or Generalized 

Displacements). 

Step 7 Solve for the Element Strains and Stresses. 

Step 8 Interpret the Results. 
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1.2 Definitions 

The total potential energy (p): is defined as the sum of the internal strain (U) 

and the potential energy of the external forces (), that is: 

  p = U +    …(1-1) 

Strain energy (U): is the capacity of internal forces (or stresses) to do work 

through the deformations (strains) in the structure. 

Potential energy of external work (): is the capacity of forces, such as body 

forces, surface traction and nodal applied forces to do work through the 

deformations of the structure. 

 The potential energy of structure is expressed in terms of displacements. 

In the finite element formulation, this will generally be nodal displacement such 

that: 

  p = p(d1, d2, d3,…… dn)  …(1-2) 

 Where di are nodal displacements. 

 When p is minimized with respect to these displacements 

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equilibrium equation (kd = F) result. 

1.3 Work  

 1.3.1 Work done by force (W):  

 Let a force F moves a body from A to A  of 

distance (s). The increment of work is:  

  dW = F. ds  

and the total work is 

F 

s 

ds 

A 

F 

Fig.(1): Load-displacement relationship 
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1.3.2 Work done by a couple (or moment): 

 Let C a couple act on one end of a body of length l which pivoted at the 

other end as shown in Fig. (3). Let d be the rotation. Replace the couple C by 

two equal and opposite forces each equal 
l

C
F  . 

The increment of work is: 

dW =F.ds+ F * 0 = 
l

C
×l d  = C×d 

 

so  dW = C*d

and the total work is 
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If  C=k (linear rotational spring) 

Then 
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Thus CW
2

1
  (area of triangle)   …(1-4) 

Note: The work done by external forces on a structure is stored in the structure 

as energy (strain energy). 

Moving 
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 Fig. (2) Force-deformation curve for linear spring 
 s 

Fig.(3) : Rotation of pivot bar   
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1.3.3 Work done by stresses in a body: 

Consider a rectangular block (dV = dx.dy.dz) under normal stresses (x,y andz) 

and under shear stresses(xyyx,zyyz and zxxz). 

Note: Remember that normal stresses act twos but shearing stresses in fours to 

maintain equilibrium. 

 

Let the normal strains be (x, y andz) and shearing strains (xy, yz andzx) 

 

To find the work (or energy) by the stresses in the block: 

 First assume x is acting alone. 

The work (or energy) by x is:  

l l 

P P 
 

l

l
  Shearing strain = 

angle of rotation () 

Typical element undergoes 

normal strain 

Typical element undergoes 

shearing strain 

Fig. (5): Typical element undergoes strain 

dx 

dy x x 

dx 

dy 

xy 
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y 

yx 

yx 

xy 

Typical element under 

Normal stresses 

Typical element under 

shearing stresses 

Fig. (4): Typical element under stresses maintaining equilibrium  

dx 

dy x x 

x.dx 

Fig. (6): Elongation due to normal stress  



Subject: Finite Element , Lecturer: Prof. Dr. Fayadh M. Abed  

First Lecture : Introduction 

  (6) 

).().(
2

1
.

2

1
1 dxdzdydsFdU xx     where dV = dx dy dz 

So dVdU xx .
2

1
1   

 

similarly 

dVdU yy .
2

1
2   and  dVdU zz .

2

1
3   

 Next the shearing stresses (xyyx) are acting alone.  

).().(
2

1
.

2

1
4 dydzdxdsFdU xyyx      

So dVdU xyyx .
2

1
4   

similarly 

dVdU yzyz .
2

1
5   and  dVdU zxzx .

2

1
6   

 Now combine: 

dU = dU1 + dU2 + dU3 + dU4 + dU5 + dU6 

            =
2

1
 (x x+y y+z z+xy xy+yz yz +zx zx)dV  …(1-5a) 

Or in matrix form: 

  dVdU
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1
    …(1-5b) 

or 

xy 
xy 

xy 

yx 

yx 

xy.dy 

dx 

dy 

Fig. (7): Rotation due to shearing stress  
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  dVdU

zx

yz

xy

z

y

x

zxyzxyzyx










































2

1
   …(1-5c) 

 

The total energy in the body is 


.vol

dUU    
.

.
2

1

vol

T
dV  

   
.

.
2

1

vol

zxzxyzyzxyxyzzyyxx dV  …(1-5d) 

1.4 Stress-Strain Relations: 

1.4.1 Normal strain (changing length): 

Take a line AB of length dx in x-direction. When it deforms, it goes to     

A`B`. So, 

 

AB

ABBA

lengthorginal

lengthchanged
strainNormal



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Fig. (8): Displacements and rotations of lines of an element in the xy-plane 
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or 
dx

dx
x

u

dx

dxdx
x

u
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
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


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x

u
x




      …(1-6a) 

Similarly  
y

v
y




      …(1-6b) 

  
z

w
z




      …(1-6c) 

where u, v and w are displacements along x, y and z-axes respectively. 

1.4.2 Shear strain (changing angle) 

 Take two lines AB and AC at right angles in xy-plane. These will be A`B` 

and A`C` (see Fig.(8)):  

 
dy

dy
y

u

dx

dx
x

v

strainshear

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
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Similarly  
z

v
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w
yz
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x

w

z

u
zx









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1.5 Hook's Law 

1.5.1 Three-Dimensions Problems: 

  zyxx
E

 
1

   …(1-8a) 

 zyxy
E

 
1

   …(1-8b) 
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 zyxz
E
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1

   …(1-8c) 
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Or in matrix form 





































































































zx

yz

xy

z

y

x

zx

yz

xy

z

y

x

E





































)1(200000

0)1(20000

00)1(2000

0001

0001

0001

1
 …(1-8g) 

Where  E: modulus of elasticity, 

  : Poisson's ratio  

And the inverse relations: 
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 …(1-9) 

Where  
)1(2 


E

G  

Note: If 5.0 , then zyx or ,   (incompressible material) 

1.5.2 Two-Dimensions Problems: 
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There are two types of two-dimensional problems 

1.5.2.1 Plane stress: 

Plane stress is defined to be a state of stress in which the normal stress 

and the shear stresses directed perpendicular to the plane are assumed to be 

zero, that is 

0 xzyzz     ( 0z ) …(1-10) 

 

Generally, members that are thin (those with a small z dimension 

compared to the in-plane x and y dimensions) and whose loads act only in the xy-

plane can be considered to be under plane stress. 

1.5.2.2 Plane Strain 

Plane strain is defined to be a state of strain in which the strain normal to the xy-

plane z and the shear strains xz and yz are assumed to be zero. That is: 

0 xzyzz     ( 0z )  …(1-11) 

The assumptions of plane strain are realistic for long bodies (say, in the z 

direction) with constant cross-sectional area subjected to loads that act only in 

the x and/or y directions and do not vary in the z direction. 

Fig.(9): Plane stress problems 

(a) plate with hole (b) plate with fillet 
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The two dimensional state of stress and strain is: 

     D     …(1-12) 

Where  

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
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
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While [D]3×3 has two definitions 

 Plane stress 

 




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









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1
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1 2








E
D   …(1-13)  

Where  E: modulus of elasticity, 

  : Poisson's ratio 

 Plane strain 

From Eq. 1-9 

Fig.(10): Plane strain problems: 

(a): dam subjected to horizontal loading 

 

(b): pipe subjected to a vertical load 

Fig.(11): Two-dimensional state of stress  

Fig.(12): Displacements and rotations of lines 

of an element in the xy-plane 
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or in the other words 
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Thus   
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Where  
21

`



E

E ; 








1
`  and  G`=G 

And the strains are: 

  yxx
E

 `
`

1
      …(1-15a)    

   
yxy

E
  `

`

1
     …(1-15b)    

  
EGG
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

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`


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