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2.1 Derivation of the Stiffness Matrix for a Spring Element 

Step 1 Discretize and Select the Element Types. 

Here, the spring element has 2 nodes and there is one degree of freedom (d.o.f) 

in each node. 

  The element has (2*1=2 d.o.f) 

Note: Forces and displacements are positive if they 

are in the positive direction of coordinate. 

Step 2 Select a Displacement Function. 

Use polynomials with total number of coefficients (ai) are equal to the number 

of (d.o.f) associated with the element. 

 xaau ˆˆ
21 +=     …(2-1a) 

or in matrix form:    








=
2

1ˆ1ˆ
a

a
xu   …(2-1b) 

Find a1 and a2 by applying boundary conditions 

at node 1  0ˆ =x      xdu 1
ˆ=      11

ˆ ad x =  

at node 2  Lx =ˆ      xdu 2
ˆ=      Laad x 212

ˆ +=  

xda 11
ˆ=    Ladd xx 212

ˆˆ +=    
L

dd
a xx 12

2

ˆˆ −
=  

Then   x
L

dd
du xx

x
12

1

ˆˆ
ˆˆ

−
+=    …(2-2a) 

Rewrite as: xx d
L

x
d

L

x
u 21

ˆˆˆˆ
1ˆ +








−=   …(2-2b) 

   












=
x
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d

d
NNu

2

1
21 ˆ

ˆ
ˆ    …(2-2c) 

Fig.(2-1): Linear spring element with positive nodal 

displacement and force conventions. 
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Where 
L

x
N

ˆ
11 −=  and  

L

x
N

ˆ
2 =  …(2-2d) 

Note: Notice that N1= 1 at node 1 and  N1= 0 at 

node 2. 

 And also N2= 0 at node 1 and  N2= 1 at 

node 2. 

So that N1+ N2= 1 at any axial coordinate along 

the element.  

 

 

Step 3 Define the Strain-Displacement and Stress-Strain Relationships 

For a spring element, we can relate the force in the spring directly to the 

deformation. Therefore, the strain/displacement relationship is not necessary 

here. 

 

The stress/strain relationship can be expressed in terms of the 

force/deformation relationship instead as: 

  T = k    )ˆˆ( 12 xx ddkT −=  …(2-3) 

 

Step 4 Derive the Element Stiffness Matrix and Equations. 

Fig.(2-3): a: Linear spring subjected to tensile forces b: deformed shape 

a 
b 

Fig.(2-2): (a) Spring element showing plots of (b) 

displacement function û  and shape functions (c) N1 

and (d) N2 over domain of element 
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 Direct equilibrium method will be used in this derivation.  

Case a: Assume that only node 1 can deflect and node 2 being fixed. 

 

 xa dkf 11
ˆˆ =  

And from equilibrium (Fx =0) 

 0ˆˆ
21 =+ aa ff  

 0ˆˆ
21 =+ ax fdk  

 xa dkf 12
ˆˆ −=    …(2-4a) 

Case b: Assume that only node 2 can deflect and node 1 being fixed. 

 

 xb dkf 22
ˆˆ =  

and from equilibrium (Fx =0) 

 0ˆˆ
21 =+ bb ff  

 0ˆˆ
21 =+ xb dkf  

 xb dkf 21
ˆˆ −=    …(2-4b) 

 

 

bf1
ˆ

 

0ˆ
1 =xd  

A B` 

xd2
ˆ

 

Fig. (2-4b): Case 2: Force bf2
ˆ is applied at node 2 and node 1 is fixed 

B 
bf2

ˆ
 

af1
ˆ

 

xd1
ˆ

 

A A` 

0ˆ
2 =xd  

Fig. (2-4a): Case 1: Force af1
ˆ is applied at node 1 and node 2 is fixed 

B af2
ˆ
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Using the principle of superposition by combining 

the load systems: 

The total forces acting at node 1: 

xxbax dkdkfff 21111
ˆˆˆˆˆ −=+=  …(2-5a) 

xxbax dkdkfff 21222
ˆˆˆˆˆ +−=+=  …(2-5b) 

In matrix form 





















−

−
=













x

x

x

x

d

d

kk
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f

f

2

1

2

1

ˆ

ˆ

ˆ

ˆ
  …(2-6) 

Thus the stiffness matrix [ke] for single spring is:  










−

−
=

kk

kk
k e ]ˆ[    …(2-7) 

Where ]ˆ[ ek  matrix is called local stiffness matrix. 

Step 5 Assemble the Element Equations to Obtain the Global or Total Equations 

and Introduce Boundary Conditions. 

This step applies for structures composed of more than one element such 

that:  
=

=
n

e

ekK
1

]ˆ[][   and  
=

=
n

e

efF
1

}ˆ{}{   …(2-8) 

Where n is the total number of elements. 

Step 6 Solve for the Unknown Degrees of Freedom (or Generalized 

Displacements). 

The displacements are then determined by imposing boundary conditions, 

such as support conditions, and solving a system of equations, }]{[}{ dKF = , 

simultaneously. 

Step 7 Solve for the Element Strains and Stresses. 

Finally, the element forces are determined by back-substitution, applied to 

each element, into equations similar to Eqs. (2-5). 

xd1
ˆ

 

A A` 

xd2
ˆ

 

Fig. (2-4c): The principle of superposition 

(combination of case 1 & case 2) 

B B` xf2
ˆ

 xf1
ˆ
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2.2 Stiffness Matrix for Assembly Spring  

 The stiffness matrix [K] for the collinear spring shown in Fig. (2-5) can 

be derived as follows: 

 The x axis is the global axis of the 

assemblage. The local x̂ axis of each element 

coincides with the global axis of the assemblage.  

Case a: Put 032 == xx dd  so xa dkf 111 =  

Note that no force exists at node 3, since xd2  and xd3  are specified as zero. 

 03 =af  

And from equilibrium (Fx =0) 

 

00211 =++ ax fdk    xa dkf 112 −=  

Case 2: Put 031 == xx dd .  

It can be noted that in this case continuity displacement at node 2 require that 

each spring deflect the same amount. 

Thus the force at node 2 consists of 

two components ( xx dkdk 2221 , )  

So  xb dkkf 2212 )( +=  

Consider the equilibrium of each spring individually. 

Note: From compatibility condition we can conclude that b

e

b

e

b ddd 222
21 == . 

Element 1 

b

e

bb dkdkf 21211
1 −=−=  

0321 =++ aaa fff

0 

x  

xdF 11,  xdF 22,  
xdF 33,  

Fig.(2-5): Collinear spring system  

x  

xd1  02 =xd  

Fig.(2-6a): Case1  : node 1 is free and node 2 and 3 are fixed  

03 =xd  

03 =af  af1  
af2  

x  

01 =xd  xd2  

Fig.(2-6b): Case2  : node 2 is free and node 1 & 3 are fixed  

03 =xd  

03 =bf  bf1  
bf2  

01 =bd  

b

e

b dkf 212
1 =  

bf1  

1

2

e

bd  

Fig.(2-6c): internal forces and displacements in element 1  
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Element 2 

b

e

bb dkdkf 22223
2 −=−=  

Case c: Put 021 == xx dd  so xc dkf 323 =  

Note that no force exists at node 1, since xd1  and xd2  are specified as zero. 

 01 =cf  

And from equilibrium (Fx =0) 

 

00 322 =++ xc dkf    xc dkf 322 −=  

By superposition: 

  CASE 1 CASE 2 CASE 3 

The total force acting at node 1 F1= k1d1x -k1d2x 0 

The total force acting at node 2 F2= - k1d1x k1d2x+ k2d2x - k2d3x 

The total force acting at node 3 F3= 0 - k2d2x k2d3x 

Writing these equations in matrix form gives: 

 

















−

−+−

−

=

22

2211

11

0

0

][

kk

kkkk

kk

K     …(2-9) 

Note: The stiffness matrix [K] is symmetric. 

Note: There is another more convenient method for constructing the total 

stiffness matrix as it will be indicated. 

First [ke] of the constituent element is written down   

For Element 1 

















−

−
=









x

x

x

x

d

d
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f

f

2

1

11

11

2

1   

0321 =++ ccc fff

0 

03 =bd  

bf1
ˆ  k2 

2 3 

b

e

b dkf 222
2 =  bf3  

2

2

e

bd  

Fig.(2-6d): internal forces and displacements in element 2  

x  

01 =xd  02 =xd  

Fig.(2-6e): Case3  : node 3 is free and node 1 and 2 are fixed  

xd3  

cf3  01 =cf  
cf2  
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for Element 2 
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3

2  

by inserting rows and columns of zeros, both may be expanded in such way that 

they relate to the three displacements (d1x, d2x and d3x) thus, 

For Element 1 
































−

−
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x

x

x

d
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F

F

3

2
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3
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1
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0
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For Element 2 
































−
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The rule for matrix addition may be used to obtain, 
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1

0

0

  

Then apply the boundary conditions and eliminate the columns and rows 

corresponding to the zero displacements and solve the resulted equations for the 

displacements. Then, if required, put the calculated displacement on the original 

equations to find the reactions. Finally, use the force-displacements relations of 

the element to obtain the internal element forces. 

2.3 Properties of the Stiffness Matrix 

1. [K] is symmetric, as is each of the element stiffness matrices. 

2. [K] is singular, and thus no inverse exists until sufficient boundary 

conditions are imposed to remove the singularity and prevent rigid body 

motion. 

3. The main diagonal terms of [K] are always positive. Otherwise, a positive 

nodal force Fi could produce a negative displacement di (a behavior 

contrary to the physical behavior of any actual structure). 
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Example 2.1: For the spring assemblage with arbitrarily numbered nodes 

shown in Fig.(2–7), obtain (a) the global stiffness matrix, (b) the displacements 

of nodes 3 and 4, (c) the reaction forces at nodes 1 and 2, and (d) the forces in 

each spring. A force of 5000 lb is applied at node 4 in the x direction. The spring 

constants are given in the figure. Nodes 1 and 2 are fixed. 

 

Solution:  

1. The stiffness matrix of each element is, 

3

1)1(

31

10001000

10001000
][ 









−

−
=k

   

4

3)2(

43

20002000

20002000
][ 









−

−
=k

 

2

4)3(

24

30003000

30003000
][ 









−

−
=k

 

2. Then expand each matrix with dimensions equal the dimensions of the 

stiffness matrix of the whole structure. 

4

3

2

1

)1(

4321

0000

0100001000

0000

0100001000

][



















−

−

=k
  

4

3

2

1

)2(

4321

2000200000

2000200000

0000

0000

][



















−

−
=k

 

4

3

2

1

)3(

4321

3000030000

0000

3000030000

0000

][



















−

−
=k

 

Fig. (2–7): Spring assemblage for solution 
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3. Obtain the global stiffness matrix: [K]=[k(1)]+ [k(2)]+ [k(3)] 

 

4

3

2

1

4321

30002000200030000

20002000100001000

3000030000

0100001000

][



















+−−

−+−

−

−

=K
 

4. The global stiffness matrix relates the global forces to global displacement 

({F}=[K]{d}) as follows, 
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1
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5. Apply the boundary conditions, 

 











































−−
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x

x

d

d

R

R

4

3

2

1

0

0

5000200030000

2000300001000

3000030000

0100001000
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0
 

6. Eliminate the rows and columns corresponding to zero displacements yields, 

 

Thus   

















−

−
=









x

x

d

d

4

3

50002000

20003000

5000

0
 

7. Solve the above simultaneous equations yields, 

  ind x
11

10
3 =  ; ind x

11

15
4 =    

8. To obtain the global nodal forces (which include the reactions at nodes 1 and 

2), we back-substitute. This substitution yields, 
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0
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−−

−−

−
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11/15

11/10

0

0

5000200030000

2000300001000

3000030000

0100001000

4

3
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1

x

x

x

x

F

F

F

F

 

Multiplying above matrices and simplifying, we obtain the forces at each node, 

lbF x
11

00010
1

−
= ;  lbF x

11

00045
2

−
= ;  lbF x 03 = ; lblbF x 5000

11

00055
4 ==  

From these results, you can check the equilibrium conditions. 

9. Next we use local element to obtain the forces in each element (internal 

forces). 

Element 1 (nodes 1-3) 

















−

−
=













11/10

0

10001000

10001000

ˆ

ˆ

3

1

x

x

f

f
 

Simplifying,  lbf x
11

00010ˆ
1

−
= ;  lbf x

11

00010ˆ
3 =  

 

Element 2 (nodes 3-4) 

















−

−
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11/15

11/10

20002000

20002000

ˆ

ˆ

4

3

x

x

f

f
 

Simplifying,  lbf x
11

00010ˆ
3

−
= ;  lbf x

11

00010ˆ
4 =  

 

Element 3 (nodes 4-2) 

















−

−
=













0

11/15

30003000

30003000

ˆ

ˆ

2

4

x

x

f

f
 

Simplifying,  lbf x
11

00045ˆ
4 = ;  lbf x

11

00045ˆ
2

−
=  

Fig. (2-9): Free-body diagram of element 2. 

Fig. (2-8): (a) Free-body diagram of element 1 and (b) free-body diagram of node 1. 
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Example 2.2: For the spring assemblage shown in Fig. (2–11), obtain (a) the 

global stiffness matrix, (b) the displacements of nodes 2–4, (c) the global nodal 

forces, and (d) the local element forces. Node 1 is fixed while node 5 is given a 

fixed, known displacement  =20 mm. The spring constants are all equal to k = 

200 kN/m. 

 

Solution:  

1. The stiffness matrix of each element is 

5432

43214321

2

3

4

5

1

2

3

4

200200

200200
][][][][ 









−

−
==== kkkk

 

2. So, the global stiffness matrix  

  
mkNK /

200200000

20040020000

02004002000

00200400200

000200200

][

5

4

3

2

1

55

54321























−

−−

−−

−−

−

=

 

3. The global stiffness matrix relates the global forces to the global 

displacements as follows: 

Fig. (2-11): Spring assemblage for solution 

Fig. (2-10): (a) Free-body diagram of element 1 and (b) free-body diagram of node 2. 
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00200400200
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4. Applying the boundary conditions d1x= 0 and d5x=20 mm (= 0.02 m), substituting 

known global forces F2x= 0, F3x= 0, and F4x= 0, and partitioning the first and 

fifth of above equations corresponding to these boundary conditions, we 

obtain, 
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We now rewrite above equations transposing the product of the appropriate 

stiffness coefficient (200) multiplied by the known displacement (0.02 m) to the 

left side. 
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Solving, we obtain d2x = 0.005 m, d3x = 0.01 m, and d4x = 0.015 m. 

5. The global forces obtained by back-substitution the boundary conditions. 
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kNF x 0.11 −= ; 02 =xF ; 03 =xF ;  04 =xF  and kNF x 0.15 =   

 

6. We make use of local element equation to obtain the forces in each element. 

Element 1 
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Simplifying yields 

   kNf x 0.1ˆ
1 −= ;  kNf x 0.1ˆ

2 =   

Element 2 

















−

−
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Simplifying yields 

   kNf x 0.1ˆ
2 −= ;  kNf x 0.1ˆ

3 =   

Element 3 

















−

−
=













015.0

010.0

200200

200200

ˆ

ˆ

4

3

x

x

f

f
 

Simplifying yields 

   kNf x 0.1ˆ
3 −= ;  kNf x 0.1ˆ

4 =   

Element 4 
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Simplifying yields 

   kNf x 0.1ˆ
4 −= ;  kNf x 0.1ˆ

5 =   

Example 2.3: Formulate the global stiffness matrix for the system of linear 

springs shown below, and then find the unknown displacements and reactions. 

 

Solution:  

1. The stiffness matrix of each element is, 

2

1

11

11)1(

21

][ 
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Fig. (2–12): Spring assemblage for solution 



Subject: Finite Element , Lecturer: Prof. Dr. Fayadh M. Abed  

Spring elements 

  (26) 

4

2
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2. The global stiffness matrix is, 
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3. Applying the boundary conditions (d1x= 0, d3x= 0, d4x= 0 and F2x= P), 
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4. Eliminating the rows and columns corresponding to zero displacement 

  

Solving, we obtain 
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=  

5. The reactions could be found by back substitution  
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