Subject: Finite Element, Lecturer: Prof. Dr. Fayadh M. Abed

Spring elements

2.1 Derivation of the Stiffness Matrix for a Spring Element

Step 1 Discretize and Select the Element Types.

Here, the spring element has 2 nodes and there is one degree of freedom (d.o.f)

in each node. | . )
The element has (2*1=2 d.o.f) S ; f
. c. . Fig.(2-1): Linear spring element with positive nodal
Note: Forces and displacements are positive if they &Y disp,acef)nen% o force comentions,

are in the positive direction of coordinate.
Step 2 Select a Displacement Function.

Use polynomials with total number of coefficients (a;) are equal to the number

of (d.o.f) associated with the element.

U=a +a,X ...(2-1a)

or in matrix form: {i}=[1 x]{zi} ...(2-1b)

2

Find a; and a, by applying boundary conditions

atnodel %=0 = u=d, = d,=a
atnode2 =L = u=d,, = dy,=a-+al
A AN d, —d
alzdlx = d2x:dlx+a2|‘ = 3.2: 2Xl_ B
Then G=d, +d2X—[lex ...(2-23)
Rewrite as: G :(1—8(?“ +%6|2X ...(2-2b)
A dAl
=[N, N,k > ..(2-20)
d2x
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Where N1=1—i and N, =
L

...(2-2d)

|_|><>

Note: Notice that N;=1 at node 1 and N;= 0 at

=+ ﬂg,’f_
node 2. R
i : J
iy O O N
And also N2= 0 at node 1 and N»=1 at (b) o
[ N = 1 - i
node 2. [
—=
So that N1+ N2= 1 at any axial coordinate along _ ©
Ny = X o
the element. L_\ |

[] o
(d)

Fig.(2-2): (a) Spring element showing plots of (b)
displacement function U and shape functions (c) N:
and (d) N2 over domain of element

Step 3 Define the Strain-Displacement and Stress-Strain Relationships

For a spring element, we can relate the force in the spring directly to the
deformation. Therefore, the strain/displacement relationship is not necessary

here.

Fig.(2-3): a: Linear spring subjected to tensile forces b: deformed shape

The stress/strain relationship can be expressed in terms of the

force/deformation relationship instead as:

T=ks =  T=k(d, —d,) ...(2-3)

Step 4 Derive the Element Stiffness Matrix and Equations.
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Direct equilibrium method will be used in this derivation.

Case a: Assume that only node 1 can deflect and node 2 being fixed.

:lalxi L [jr d2x=0

Fig. (2-4a): Case 1: Force fla is applied at node 1 and node 2 is fixed
fAla = kalx
And from equilibrium (2Fx =0)
fla + fZa =0
kdy, + f,0 =0
fpq = —kdy, ...(2-4a)

Case b: Assume that only node 2 can deflect and node 1 being fixed.

A

Fig. (2-4b): Case 2: Force be is applied at node 2 and node 1 is fixed
f2b = kdzx

and from equilibrium (2F, =0)

A

fyy+ f =0
ﬂb + kde =0
f,, =—kd,, ...(2-4b)
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Using the principle of superposition by combining

the load systems: f A A B B fy
—0 D—/\/\/\/\—C Oo0—

The total forces acting at node 1.: | diy | L dyy

£ _ f £ _ 1A 3 Fig. (2-4c): The principle of superposition
f = fia + T, = kdy, —kd,, +++(2-59) (combination of case 1 & case 2)

A A

f, =f, +f, =—kd, +kd, ~...(2-5b)

. f k —k]ld
In matrix form flx { } q“ ...(2-6)
f2x - k k d2x

Thus the stiffness matrix [k°] for single spring is:

n k -k

k®]= we(2-7

[k°] Lk " } (2-7)
Where [k°] matrix is called local stiffness matrix.

Step 5 Assemble the Element Equations to Obtain the Global or Total Equations
and Introduce Boundary Conditions.

This step applies for structures composed of more than one element such

that: [K]= Zn:[IZE] and {F}= i{f gt ...(2-8)

Where n is the total number of elements.

Step 6 Solve for the Unknown Degrees of Freedom (or Generalized

Displacements).

The displacements are then determined by imposing boundary conditions,
such as support conditions, and solving a system of equations, {F}=[K]{d},

simultaneously.
Step 7 Solve for the Element Strains and Stresses.

Finally, the element forces are determined by back-substitution, applied to
each element, into equations similar to Egs. (2-5).
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2.2 Stiffness Matrix for Assembly Spring

The stiffness matrix [K] for the collinear spring shown in Fig. (2-5) can

be derived as follows:

— ==X

d2x ]{2 F3,d3x

The x axis is the global axis of the Fd, ko F
— AW ——

assemblage. The local %axis of each element 1 9 3

coincides with the global axis of the assemblage. Fig.(2-5): Collinear spring system
Casea: Put d,, =d,, =0 so f,=kd,
Note that no force exists at node 3, since d,, and d,, are specified as zero.

f,, =0

a

And from equilibrium (2F« =0)

0
f1a+f2a+%:0

kd, +f,,+0=0 = f,, =—kd,

Case 2: Putd,, =d,, =0.

It can be noted that in this case continuity displacement at node 2 require that
each spring deflectthe same amount.
Thus the force at node 2 consists of

two components (k,d,,,k,d,, )

S0 fy=(k +ky)d,, Fig.(2-6b): Case2 : node 2 is free and node 1 & 3 are fixed
Consider the equilibrium of each spring individually.

Note: From compatibility condition we can conclude that d;; =d;2 =d,, .

Element 1 f, k;y  fa =kdy

€.
flb :_kldzé :_kleb dlb =0 1 2 dzeia

Fig.(2-6¢): internal forces and displacements in element 1
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Element 2 " AW

dz 2 3 dy, =0

f3b

f,, =—-k,d2 =-k,d
® e e Fig.(2-6d): internal forces and displacements in element 2

Casec: Put d, =d,, =0 s0|f; =k,d,,

Note that no force exists at node 1, since d,, and d,, are specified as zero.

f =0

And from equilibrium (2F« =0)
0

}{+ f.+f, =0

0+ f,, +k,d;, =0 = f,. =—K,d,,

By superposition:

CASE1 CASE2 CASE3
The total force acting at node 1 Fi=  kidux -kadx 0
The total force acting at node 2 F2=  -kidix  kadac+ kodax - Kadax
The total force acting at node 3 Fs= 0 - Koax ko0l3x

Writing these equations in matrix form gives:

k -k O
[Kl=|-k k+k, —k, < (2-9)
0 -k, kK

Note: The stiffness matrix [K] iS symmetric.

Note: There is another more convenient method for constructing the total

stiffness matrix as it will be indicated.
First [k] of the constituent element is written down

f

k, -k |[d
For Element 1 =l T
SO Y
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f k, -k, |ld
for Element 2 ol 2 2T
f3x - kz kz d3x

by inserting rows and columns of zeros, both may be expanded in such way that

they relate to the three displacements (di, d2x and dsy) thus,

le kl _kl 0 dlx
For Element 1 For=|-k k 0§d,,
F) | O 0 0]|ds,
F.] [0 O 0 ([d,
For Element 2 F,r=/0 k, —k,[d,,
F3x _O _kz kz d3x

The rule for matrix addition may be used to obtain,

F., k, -k, 0 ||d,
F2x = _kl k1+k2 _kz dz
F,, 0 -k, k, ||d;

X

X

Then apply the boundary conditions and eliminate the columns and rows
corresponding to the zero displacements and solve the resulted equations for the
displacements. Then, if required, put the calculated displacement on the original
equations to find the reactions. Finally, use the force-displacements relations of

the element to obtain the internal element forces.

2.3 Properties of the Stiffness Matrix

1. [K]is symmetric, as is each of the element stiffness matrices.

2. [K] is singular, and thus no inverse exists until sufficient boundary
conditions are imposed to remove the singularity and prevent rigid body
motion.

3. The main diagonal terms of [K] are always positive. Otherwise, a positive
nodal force Fi could produce a negative displacement d; (a behavior

contrary to the physical behavior of any actual structure).
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Example 2.1: For the spring assemblage with arbitrarily numbered nodes

shown in Fig.(2-7), obtain (a) the global stiffness matrix, (b) the displacements
of nodes 3 and 4, (c) the reaction forces at nodes 1 and 2, and (d) the forces in
each spring. A force of 5000 Ib is applied at node 4 in the x direction. The spring

constants are given in the figure. Nodes 1 and 2 are fixed.

k, = 1000 Ib/in. ky = 2000 Ib/in. ky = 3000 1b/in.
vy
i 3 4 P 2

@ @ 5000 Ib @ Z

Fig. (2-7): Spring assemblage for solution
Solution:

1. The stiffness matrix of each element is,

1 3 3 4

[k(l)]{looo —1000}1 [k(z)]:{zooo —2000}3

~1000 1000 |, ~2000 2000 |,
4 2

oy 3000 —3000],
~3000 3000 |,

2. Then expand each matrix with dimensions equal the dimensions of the

stiffness matrix of the whole structure.

1 2 3 4 1 2 3 4
1000 0 —-1000 0], 00 O 0o 1,
©op.| © 0 0 of ep_|0 0 0 0 |,
~1000 0 1000 O], 0 0 2000 -2000|,
o o o0 o, 0 0 —2000 2000 |,
1 2 3 4
o 0o o0 o0 ],
jop_|0 3000 0 3000,
o 0o o0 0 |,
0 —3000 0 3000 |,
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3. Obtain the global stiffness matrix: [K]=[k®]+ [k@]+ [k®)]

1 2 3 4

1000 0 —1000 0 1

(K] = 0 3000 0 -3000 |,
—1000 0 1000 + 2000 —2000 |,

0 —3000 — 2000 2000 +3000 |,

4. The global stiffness matrix relates the global forces to global displacement
({F}=[K1{d}) as follows,

F,) [1000 0 -1000 0 ](d,
5, 0 3000 0  —3000|d,
F.[ |-1000 0 3000 -2000]|d,,
F.\ 0 —-3000 —2000 5000 ||d

5. Apply the boundary conditions,

R, 1000 0 —1000 0 0

R, | | © 3000 0 —-3000 (| O
0 [ |-1000 0 3000 —2000 ||d,,
5000 0 —-3000 -2000 5000 ||d,,

6. Eliminate the rows and columns corresponding to zero displacements yields,

Ry }--[-1000-----0-----~1000-----0---1(-0

Ry ~{=-{-------3000-----0------3000 {} -0

0 [ [-1000 0 3000 —2000 ||d,,

5000 0 —3000 —2000 5000 ||d,,
0 3000 —2000](d
Thus = &
5000/ |-2000 5000 ||d,,

7. Solve the above simultaneous equations yields,

8. To obtain the global nodal forces (which include the reactions at nodes 1 and
2), we back-substitute. This substitution yields,
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F, 1000 0 —1000 0 0
Ful | O 3000 0 -3000(| O
Fs, | -1000 0 3000 —2000 ||10/11

F, 0 —-3000 -2000 5000 ||15/11

X

Multiplying above matrices and simplifying, we obtain the forces at each node,

R oy R =% E o R, = 20050001
11 11 11

From these results, you can check the equilibrium conditions.

9. Next we use local element to obtain the forces in each element (internal

forces).
f 1000 —1000 0
Element 1 (nodes 1-3) ful _
2 —1000 1000 ({10/11
: PP ~ —10000 ~ 10000
Simplifying, f, = Ib; f,, =——1Ib
p fy g 1x 11 3x 11
©
10,000 : 3 10,000 I
0 ‘—O"‘/\/\/\/\/W\/_O_’ T Fre o0 w fh
(a) (b)

Fig. (2-8): (a) Free-body diagram of element 1 and (b) free-body diagram of node 1.

Element 2 (nodes 3-4) {%} { 2000 - 2000} {10/11}

.| |—2000 2000 [|15/11
. ip - ~ —-10000 ~ 10000
Simplifying, f. = Ib; f, =—"1Ib
plifying 3 11 ax 11
@

10,000 3 4 10,000
T “VVVVVVV™® T

Fig. (2-9): Free-body diagram of element 2.

i - 15/11
Element 3 (nodes 4-2) | fal _| 3000 —300015/
foy —3000 3000 0

45000
11

>

_ —45000
11

Ib

Simplifying, f,, b; f,,

(22)
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1 I foy——mO— P,

(a) (b)

Fig. (2-10): (a) Free-body diagram of element 1 and (b) free-body diagram of node 2.

Example 2.2: For the spring assemblage shown in Fig. (2-11), obtain (a) the
global stiffness matrix, (b) the displacements of nodes 24, (c) the global nodal
forces, and (d) the local element forces. Node 1 is fixed while node 5 is given a
fixed, known displacement 5§=20 mm. The spring constants are all equal to k =

200 kN/m.

Fs, .
k 5 5
]

Fig. (2-11): Spring assemblage for solution

Solution:

1. The stiffness matrix of each element is

N W s
N W A~ o

1

200 —200}1 ), s

[K'1=[k*]1=[k’]=[k*]= L 200 200

2 3 4 5
2. S0, the global stiffness matrix

1 2 3 4 5

200 -200 O 0 0o |,
~200 400 -200 O 0 |,
[Kls=| O —200 400 -200 O |,kN/m
0 0 -200 400 -200|,
0 0 0 —200 200 |,

3. The global stiffness matrix relates the global forces to the global

displacements as follows:
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F,] | 200 -200 0 0 0 |(d,
F,| |-200 400 -200 O 0 ||dy,
F,t=| 0 —200 400 —-200 O [d,,
= 0 0 —200 400 -200||d,,
R | 0 0 0 -200 200 ||ds,

4. Applying the boundary conditions di= 0 and dsx=20 mm (= 0.02 m), substituting
known global forces Fx= 0, Fs= 0, and Fs= 0, and partitioning the first and

fifth of above equations corresponding to these boundary conditions, we

obtain,
0
0] [-200 400 -200 O 0 d,,
Op=| 0 —-200 400 -200 O d.,
0 0 0 -200 400 -200|| d,,
0.02m

We now rewrite above equations transposing the product of the appropriate
stiffness coefficient (200) multiplied by the known displacement (0.02 m) to the
left side.

0 400 -200 0 |[d,,
0 p=|—200 400 —200{d,,
4KN 0 —200 400 |d,,

Solving, we obtain dzx = 0.005 m, dax = 0.01 m, and dax = 0.015 m.

5. The global forces obtained by back-substitution the boundary conditions.

F. 200 -200 O 0 0 0
F,.| [-200 400 -200 O 0 |/0.005
F, 0 -200 400 -200 O [0.010
F.. 0 0 -200 400 -—200|(0.015
F | O 0 0 -200 200 |{0.020
~F,=-1.0kN; F,. =0; R, =0; F,=0and F, =1.0kN

6. We make use of local element equation to obtain the forces in each element.
f 200 -200|( O

Element 1 flx =
f —200 200 ||0.005

(24)



Subject: Finite Element, Lecturer: Prof. Dr. Fayadh M. Abed

Spring elements

Simplifying yields

A~

f, =—1.0kN f, =1.0kN

f 200 —2001(0.005
Element 2 ffx =
f —200 200 ||0.010

3x

Simplifying yields

A~ A~

f, =—1.0kN; f, =1.0kN

3 200 -2001(0.010
Element 3 ffx =
f —200 200 ||0.015

4x

Simplifying yields

A A

f, =—10kN; f, =1.0kN

f 200 —-2001(/0.015
Element 4 f:‘* =
f —-200 200 {|0.020

5x

Simplifying yields
f, =—1.0kN; f. =1.0kN
Example 2.3: Formulate the global stiffness matrix for the system of linear

springs shown below, and then find the unknown displacements and reactions.

272
2 3
O
k
| ! 2 P® 2
® 2 ks 4
Rigid bar = | O]
P O P

Fig. (2-12): Spring assemblage for solution
Solution:

1. The stiffness matrix of each element is,

=~
[

=~
N

|
w N

[k(l)]:|:kl _k:|1 [k(Z)]=|: 2
_kl kl 2 _kz kz
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2 4
[k(S)]:|: k3 _k3j|2
_ks ks 4

2. The global stiffness matrix is,

1 3
kl - k1 1
K=k Rkl <k -k,
0 - kz kz 3
0 -k, 0 Ky |4

3. Applying the boundary conditions (di= 0, dz= 0, dax= 0 and Fa= P),

F) [k —k o o07fo
P| |-k k+k+k -k —k||d,,
F. [ | © Kk, kK, 0o
F.] | 0 kK, 0 k|| 0O

4. Eliminating the rows and columns corresponding to zero displacement

L AT
P _ _ikl k1+k2+k3 _Ikz _!<3 d2x
LT R B R a1
Faif b0k 0

Solving, we obtain

P

P}=Ik, +k, +k,]{d, .} ..d, =——
{} [l+ 2+ 3]{ 2X} 2X k1+k2+k3

5. The reactions could be found by back substitution

R, K, —k, 0 o0 0
Pl |-k k+k +ki —k, —k;||P/(k +k,+k,)
R,( | 0 K, kK, O 0
R, 0 —k, 0 Kk 0
:1:—;ﬁL—P; &:—lﬁL—P &:—;fL—P
k, +k, +k; k, +k, +k; k, +k, +k;
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