Capacitance finding by Laplace s equation

Examples of the solution of Laplace s equation

Several methods have been developed for solving Laplace's equation. The simplest method is that of direct integration. We will use this technique to work several examples involving one – dimensional potential variation in various coordinate systems in this section.

- 1) Given V, use $\mathbf{E} = -\nabla V$ to find \mathbf{E} .
- 2) Use $\mathbf{D} = \epsilon \mathbf{E}$ to find \mathbf{D} .
- 3) Evaluate **D** at either capacitor plate, $\mathbf{D} = \mathbf{D}\mathbf{s} = \mathbf{D}_{N} \mathbf{a}_{N}$.
- 4) recognize that $\rho s = D_N$.

5) Find Q by a surface integration over the capacitor plate, $Q = \int_{s} \rho s \, ds$.

• In rectangular coordinate, let us assume that V is a function of x only:

Laplace's equation reduced to	$\frac{\partial^2 V}{\partial x^2} = 0$
Since V is not a function of y or z then:	$\frac{d^2V}{dx^2} = 0$
By integration:	$\frac{dv}{dx} = A$
Another integration:	V = Ax + B

where A and B are constants of integration

Example : Find the capacitance of a parallel-plate area S, plate separation d, and potential difference V_o between plates, (*let the potential variation is with Z only*)?

Solution: Ζ V=V_° at Z=d $\frac{\partial^2 V}{\partial z^2} = 0$ V = Az + B(1) Е To find the values of A and B: V=0 at Z=0V=0 at Z=0 $0=A(0) + B \implies B=0$ Eq (1) became: $V = AZ \dots(2)$ V=V_o at Z=d \implies V_o = Ad \implies $A = \frac{V_{\circ}}{d}$ Subst. A in (2) $V = \frac{V_{\circ}}{d}Z$ $\mathbf{E} = -\nabla \mathbf{V} = -\frac{\partial V}{\partial z}az = -\frac{V_{o}}{\partial z}az$ $\mathbf{D} = \epsilon \mathbf{E} = -\frac{\epsilon V_o}{d} az$ $\rho s = D_N = -\frac{\epsilon V_o}{d}$ $Q = \int_{s} \rho s \, ds = \int_{s} -\frac{\epsilon V_{o}}{d} \, ds = -\frac{\epsilon V_{o} S}{d}$ $C = \frac{Q}{V_c} = \frac{\epsilon S}{d}$

• In cylindrical coordinate, let us assume that V is a function of ρ only:

Example : Find the capacitance of coaxial transmission line?

Solution: between the two conductors of coaxial transmission line, V is a function of ρ only:

$$\nabla^2 V = 0 \implies \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) = 0$$

Noting the ρ in the denominator, we exclude $\rho=0$ from our solution and then multiply by ρ and integrate:

$$\left(\rho \, \frac{dV}{d\rho}\right) = \mathbf{A}$$

Where a total derivative replaces the partial derivative because V varies only with ρ . Next, rearrange, and integrate again:

$$V = A \ln\rho + B \dots (1)$$

$$V=0 \text{ at } \rho = b$$

$$0= A \ln b + B \Longrightarrow B= -A \ln b$$

$$Eq (1) \text{ became: } V = A \ln\rho - A \ln b$$

$$V=A \ln \frac{\rho}{b} \dots (2)$$

$$V=V_o \text{ at } \rho=a \implies V_o = A \ln \frac{a}{b} \implies A = \frac{V_o}{\ln \frac{a}{b}}$$
Subst. A in (2)

$$V = \frac{V \cdot \ln \frac{\rho}{b}}{\ln \frac{a}{b}}$$

$$\mathbf{E} = -\nabla V$$

$$\mathbf{E} = \frac{V \cdot \rho}{\rho \ln \frac{b}{a}} a_{\rho}$$

$$\mathbf{D} = \epsilon \mathbf{E} = \frac{\epsilon V \cdot \rho}{\rho \ln \frac{b}{a}} a_{\rho} = \mathbf{D} \mathbf{N}$$

$$\rho s = D_{N} = \frac{\epsilon V \cdot \rho}{\rho \ln \frac{b}{a}} \quad \text{(scalar)}$$

$$Q = \int_{S} \rho s \, ds = \int_{Z=0}^{L} \int_{\emptyset=0}^{2\pi} \frac{\epsilon V \cdot \rho}{\rho \ln \frac{b}{a}} \rho d\emptyset \, dz$$

$$Q = \frac{2\pi L \epsilon V \cdot \rho}{\ln \frac{b}{a}}$$

$$C = \frac{Q}{\rho} = \frac{2\pi L \epsilon}{\rho}$$

$$Q = \frac{2\pi L \epsilon v \cdot}{\ln \frac{b}{a}}$$
$$C = \frac{Q}{V_{o}} = \frac{2\pi L \epsilon}{\ln \frac{b}{a}}$$

• In cylindrical coordinate, let us assume that V is a function of Φ only: Laplace's equation :

$$\nabla^2 V = 0$$
$$\frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} = 0$$

we exclude $\rho=0$ from our solution and multiply by ρ^2 $\partial^2 V$ $\frac{1}{\partial \phi^2} = 0$ and then integrate: $\left(\frac{dV}{d\emptyset}\right) = A$ Another integration $V = A \mathcal{O} + B \dots (1)$ V=0 at $\emptyset = 0$ 0 = A(0) + BB=0Eq (1) became: $V = A \ \emptyset \dots \dots (2)$ V=V_o at $\emptyset = \alpha \implies V_o = A\alpha$ $A = \frac{V_{\circ}}{\alpha}$ Subst. A in (2) $V = \frac{V_{\circ}}{\alpha} \emptyset$ $\mathbf{E} = -\nabla \mathbf{V}$ $\mathbf{E} = -\frac{1}{\rho} \frac{\partial V}{\partial \phi} a_{\phi}$ $\mathbf{E} = -\frac{1}{\rho} \frac{\partial}{\partial \phi} \left(\frac{V_{\circ}}{\alpha} \boldsymbol{\emptyset} \right) a_{\phi}$

$$\mathbf{D} = \epsilon \mathbf{E}$$
$$\mathbf{D} = -\frac{V_{\circ \epsilon}}{\rho \alpha} a_{\emptyset}$$
$$\rho s = D_{N}$$
$$\rho s = -\frac{V_{\circ \epsilon}}{\rho \alpha} \quad (scalar)$$
$$Q = \int_{S} \rho s \, ds$$

Assume minimum $\rho = x$ (the isolator thickness)

$$Q = \int_{z=0}^{L} \int_{\rho \simeq x}^{\rho} \frac{-\epsilon V_{\circ}}{\rho \alpha} \, d\rho \, dz$$

$$Q = \frac{V_{\circ \epsilon}}{\alpha} L \ln \frac{\rho}{x}$$
$$C = \frac{Q}{V_{\circ}} = \frac{\epsilon}{\alpha} L \ln \frac{\rho}{x}$$