STRUCTURAL DESIGN - I
 Design of Staircase
 Fadya s. Klak Assis. Prof.
 Department of Civil Engineering Tikrit University College of Engineering

February 12, 2023

Contents

- Definition of staircase
- Technical Terms
- Types of Stairs
- Structural behavior of staircases
- General Guidelines
- Design Guidelines
- Example Problem

STAIRCASES

A staircase is an important component of a building providing access between the various levels or floors in a building. (Vertical Transportation)

Technical Terms

The definitions of some technical terms, that are used in connection with the design of stairs, are given.
a) Tread or Going: horizontal upper portion of a step.
b) Riser: vertical portion of a step.
c) Rise: vertical distance between two consecutive treads.
d) Flight: a series of steps provided between two landings.
e) Landing: a horizontal slab provided between two flights.
f) Waist: the least thickness of a stair slab.
g) Winder: radiating or angular tapering steps.
h) Soffit: the bottom surface of a stair slab.
i) Nosing: the intersection of the tread and the riser.
j) Headroom: the vertical distance from a line connecting the nosing of all treads and the soffit above.

Types of Staircase

The various types of staircases adopted in different types of buildings can be grouped under geometrical and structural classifications depending upon their shape and plan pattern and their structural behavior under loads.

Geometrical Classification

a) Straight stairs
> All steps lead in one direction.
> This may be continuous with two flights with an intermediate landing \square Adopted when staircase is narrow.

Fig.:1 Straight staircase
b) Dog-legged staircase
> Consist of two straight flights running in opposite direction
$>\quad$ There is no space between flights in plan
$>\quad$ Landing is provided at level which direction of flight changes.

Fig.:2 Dog Legged staircase
c) Quarter turn Newel:
> A stair turning through 90° with the help of level landing
> Used in shops and public buildings

Fig.:3 Quarter turn Newel
d) Open Newel Stairs:
> Popularly known as open well stairs
$>$ A well or opening is left between forward and backward flight

Fig.:4 Open Well or Newel
e) Circular stairs:
> All the steps radiate from a new post or well-hole
$>$ Mostly located at the rear of the building

Structural behavior of staircases

a) Stairs Spanning in a Longitudinal direction:
> Inclined stair flight together with landing are supported on wall and beams
> The effective span is considered between the center to center of supports as in Figure a
$>$ As in Figure b, the transverse spanning of landings span is taken
$>\quad$ In case of open well stairs where span partly cross at right angles the load on common area may distributed as one half in each direction in figure c .

(a) Slob Supported on Edge Beam or Wotts

(b) Slab Cantilevered From a Central Beam

(c) Slab Cantitevered From Watl or Beam

Stalrcase Siabs Spanning In the Transverse Direction
b) Stair slab spanning in the transverse direction:
> Following are the examples of slabs spanning in the transverse direction
$>\quad$ In these slabs width of a flight being small (1-1.5m)
$>\quad$ A minimum thickness of 75 to 80 mm should be provided.
> Minimum percentage reinforcement to resist maximum bending moment should be provided.

General Guidelines

The following are some of the general guidelines to be considered while planning a staircase:
Rise (R) $: 150 \mathrm{~mm}$ to 180 mm

Tread (T) : 220 mm to 250 mm - for residential buildings.

Rise (R) : 120 to 150 mm
Tread (T) $\quad: 250 \mathrm{~mm}$ to 300 mm - for public buildings
[T+2R]: Between 500 mm to 650 mm
The width of the stair
$>\quad 0.8 \mathrm{~m}$ to 1 m for residential building and
> $\quad 1.8 \mathrm{~m}$ to 2 m for public building.

DESIGN GUIDELINES

a. Geometrical Design

| \checkmark | Assume Suitable Tread and Riser | |
| :--- | :--- | :--- | :--- |
| \checkmark | No. of Riser | $=($ F/F Height $) /$ Rise |
| \checkmark | No. of Risers in One Flight | $=0.5^{*}($ No. Of Risers $)$ |
| \checkmark | No. of Tread | $=($ No. of Risers -1$)$ |
| \checkmark | Noing distance | $=($ No. of tread $) \times($ tread width $)$ |

$\checkmark \quad$ Width of landing \geq width of stair

b. Structural Design

Effective span calculation

Effective span calculation $=c / c$ distance between supports
If not given width of support can be taken in between 200 to 300 mm

Load Calculation
Calculations should be made by considering the width of the slab equal to 1 meter
Self-weight of slab $=25 \times \mathrm{D} \times \sqrt{\left(\mathrm{R}^{2}+\mathrm{T}^{2}\right) / T(K N . m)}$
Wt of steps $\quad=25 \times 0.5 \times \mathrm{R}(\mathrm{KN} . \mathrm{m})$
Wt of floor finish $=1 \times 1$ (KN.m) (ASSUME)
Live load $\quad=3 \mathrm{KN} / \mathrm{m}^{2}$ (RESIDENTIAL BUILDING)
Live load $\quad=4-5 \mathrm{KN} / \mathrm{m}^{2}$ (PUBLIC BUILDING)
Netload (W) $\quad=\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4$
Factored load $=\mathrm{Wu}=1.2 \mathrm{Wd}+1.6 \mathrm{Wl}$
Calculation of design moments
Find max bending

Notes:-

1. The dead loads especially the self weight should be calculated for the whole inclined staircase. This selfweight includes the waist and the steps (for the horizontal span only).
2. The surfacing loads are usually horizontal (on treads of steps).
3. The live load is usually high (above $5 / \mathrm{eN} / \mathrm{m}^{2}$) and acts vertically (on horizontal span).
درأما الحماكهِ كالِ. .
4. If W_{u} is the total ultimate load, the maximum

Important note on reinforcement detailing：－
＝1， The staircase usually has bends．The reinforcement at the
葒 concrete cover at the bend will spall off．

 أح

The steps theoretically need no reinforcement．They are dead loads．In Iraq，nominal steel is used．

Example:- (design of staircase)

width of staircase $b=1.10 \mathrm{~m}$, concrete strength $f_{c}=25 \mathrm{MP}$, concrete weight, $\gamma_{c}=24.5 \mathrm{~kg} / \mathrm{m}^{3}$, steel yield $f_{y}=345 \mathrm{MPa}$. Tiling load $0.98 \mathrm{kN} / \mathrm{m}^{2}$ (horizontally), live load $5.0 \mathrm{kN} / \mathrm{m}^{2}$ (horizontally), use or take waist thickness 225 mm . Use clear cover 20 mm . use $\phi 16 \mathrm{~mm}$ for main stiver ven ion for others.

Solution:-
First the total selfweight must be calculated. length of each going is

$$
\sqrt{1.26^{2}+2.10^{2}}=2.449 \mathrm{~m}
$$

صُرْرةك
Total selfweight of waist (only):

$$
\begin{aligned}
w_{g} & =0.225 * 1.10 *\left(2.449+0.8+2.449+\frac{0.8}{2}\right) * 24.5 \\
& =36.977 \mathrm{kN}
\end{aligned}
$$

Total load of steps :

$$
\begin{aligned}
w_{s}= & \left(\frac{1}{2} * 0.180 * 0.300 * 1.1\right) \\
& * 24.5 * 14 \leftarrow \text { steps No. } \\
= & 10.187 \mathrm{kN}
\end{aligned}
$$

Tiling load

$$
\begin{aligned}
w_{t} & =1.1 *\left(2.1+0.8+2.1+\frac{0.8}{2}\right) * \frac{0.98}{\substack{\text { filing } \\
\log \mathrm{on}_{2}}} \\
& =5.821 \mathrm{kN}
\end{aligned}
$$

Total dead loads

$$
\begin{aligned}
w_{d} & =w_{g}+w_{s}+w_{t} \\
& =52.985 \mathrm{kN}
\end{aligned}
$$

Total live load

$$
\begin{aligned}
w_{l} & =1.1 *\left(2.1+0.8+2.1+\frac{0.8}{2}\right) * 5.0 \\
& =29.7 \mathrm{kN}
\end{aligned}
$$

Total ultimate load

$$
\begin{aligned}
w_{u} & =1.4 w_{d}+1.7 w_{l} \\
& =1.4(52.985)+1.7(29.7) \\
& =124.669 \mathrm{kN}
\end{aligned}
$$

The effective span is $\begin{aligned} & l=2.1+0.8+2.1+\frac{0.8}{2} \\ &=5.4 \mathrm{~m} \\ & \text { Thu e the max. positive B.M. (at center) is:- }\end{aligned}$

$$
\begin{aligned}
M^{+} & =\frac{w_{u} \cdot l}{8}=\frac{(124.669) *(5.4)}{8} \\
& =84.152 \mathrm{KN} \cdot \mathrm{~m}
\end{aligned}
$$

The effective depth is

$$
\begin{aligned}
d & =225-20-\frac{16}{2} \\
& =197 \mathrm{~mm}
\end{aligned}
$$

Find p (by any method):

$$
P=0.006716
$$

check this with $\operatorname{Pmin}=\frac{1.4}{\not f_{y}}=\frac{1.4}{345}=0.004058$
use $\rho=0.006716$
Then

$$
\begin{aligned}
& A_{s}=0.006716 * 1100 * 197 \\
&=1455.4 \mathrm{~mm}^{2} \\
& \text { use } 8 \phi 16 \rightarrow A_{s}=1609 \mathrm{~mm}^{2} \quad\left(0 . \text { K. }^{)}\right.
\end{aligned}
$$

Next Consider the cantilever part of the landing
slab:

The concentrated load (at free edge of slab) is :

$$
P_{u}=\frac{w_{u}}{2}=\frac{124.669}{2}=62.335 \mathrm{kN}
$$

self weight $\omega_{g}=0.225 * 1.10 * \frac{0.8}{2} * 24.5$

$$
=2.426 \mathrm{kN}
$$

weight of tiling

$$
\begin{aligned}
w_{t} & =1.10 * \frac{0.8}{2} * 0.98 \\
& =0.431 \mathrm{kN}
\end{aligned}
$$

Total distributed dead load

$$
\begin{aligned}
w_{d} & =w_{g}+w_{t} \\
& =2.857 \mathrm{kN}
\end{aligned}
$$

Total distributed live load

$$
\begin{aligned}
w_{l} & =1.10 * 0.4 * 5.0 \\
& =2.2 \mathrm{kN}
\end{aligned}
$$

Total ultimate load distributed:

$$
\begin{aligned}
w_{u} & =1.4 w_{d}+1.7 w_{l} \\
& =7.740 \mathrm{kN}
\end{aligned}
$$

Max. negitive B.M. (at the fixed end) is:

$$
\begin{aligned}
M^{\prime} & =P_{u} \cdot l+\frac{w_{u} \cdot l}{2} \\
& =62.335 * 0.4+\frac{7.740 * 0.4}{2} \\
& =26.482 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\text { As befor } \quad d=197 \mathrm{~mm}
$$

$$
\text { find } \quad \rho=0.002032
$$

$$
\text { This } \rho<\rho_{\mathrm{min}} \text {, so use } \rho=\rho_{\min }=0.00405 \mathrm{~d}
$$

$$
A_{s}=0.004 * 1100 * 197=866.8 \mathrm{~mm}^{2}
$$

$$
\text { use } 5 \phi 16 \longrightarrow A_{s}=1006
$$

sketch the reinforcements:-

Design of R.C. staircase

Design and sketch accurately the steel reinforcement for the staircase shown in the figure above.

$$
\text { For concrete } f_{c}=27.5 \mathrm{MPa} \quad \gamma_{c}=24.5 \mathrm{kN} / \mathrm{m}^{3}
$$

$$
\text { For steel } f_{y}=345 \mathrm{MPa} \quad \phi 12 \mathrm{~mm} \text { bars }
$$

$$
\text { surfacing load } 0.92 \mathrm{kN} / \mathrm{m}^{2} \text { (horizontally). }
$$

Live load

$$
5.80 \mathrm{kN} / \mathrm{m}^{2} \text { (horizontally). }
$$

$$
\text { stair width } b=1.20 \mathrm{~m} \text {. clear cover } 20 \mathrm{~mm} \text {. }
$$

Hint: weight of waist 25.990 KN . weight of steps 6.527 KN . surfacing load 4.416 kN .

STRUCTURAL DESIGN - II
 Design of Circular Slabs
 Opening in Slabs
 Transfer of Loads in Building Frames
 Prestressed Concrete
 Reinforced concrete Tanks Torsion
 Fadya s. Klak
 Assis. Prof.
 Department of Civil Engineering Tikrit University College of Engineering

February 7, 2024

