# STRUCTURAL DESIGN - II <br> Design of Water Tanks <br> Dr. Fadya s. Klak <br> Assis. Prof. <br> Department of Civil Engineering <br> Tikrit University College of Engineering 

February 7, 2024

## Contents

- Introduction
- Types of water tank
- Design of water tanks using elastic method resting
(1) on ground
(1) underground
(1) Rectangular
(1) Overhead circular and
(1) rectangular with staging.


## -Water Tanks -

## WATER TANKS

## Introduction

A reinforced concrete tank is a very useful structure that is meant for the storage of water, swimming, and other purposes. Water tanks are used in uncracked theory where concrete is not allowed to crack on the tension side which means tensile stress is kept within permissible tensile stress in concrete.



| Rectangular Tank | Circular Tank | Intze Tank | Prestressed Tanks |
| :---: | :---: | :---: | :---: |
| For smaller capacities rectangular tanks are adopted | For bigger capacities circular tanks are recommended | Intze tank is constructed to reduce the project cost because lower dome in this construction resists horizontal thrust. | RCC tanks are cheaper only for smaller capacities up to 10-12 lakhs liters. For bigger tanks, prestressing is the superior choice resulting in a saving of up to $20 \%$. |

STAGING - It is required for tanks above ground level. It consists of column, braces and foundation. It is designed for gravity load due to water and self weight, wind load and earthquake load.


Stresses in concrete

| Grade of Concrete | Permissible Stress in $\mathbf{N} / \mathbf{m m}^{2}$ |  | Shear stress in $\mathrm{N} / \mathrm{mm}^{2}$ |
| :---: | :---: | :---: | :---: |
|  | Direct tension | Tension due to bending |  |
| M15 | 1.1 | 1.5 | 1.5 |
| M20 | 1.2 | 1.7 | 1.7 |
| M 25 | 1.3 | 1.8 | 1.9 |
| M30 | 1.5 | 2.0 | 2.2 |
| M35 | 1.6 | 2.2 | 2.5 |
| M40 | 1.7 | 2.4 | 2.7 |

## Permissible Stress

| Sl. No. | TYPES OF STRESS | PERMISSIBLE STRESS in <br> $\mathrm{N} / \mathrm{mm}^{2}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | Fe 250 | Fe 415 |
| 1 | Tensile stress in member under direct tension | 115 | 150 |


| 2 | Tensile stress in member in bending <br> a)on liquid retaining face of member <br> b)on face away from liquid for member less than | 115 | 150 |
| :---: | :--- | :---: | :---: |
|  | 225mm thick <br> c)on face away from liquid for member greater <br> than 225mm thick | 115 | 150 |

$\begin{array}{ll}\text { Minimum area of steel } & =0.3 \% \text { gross area } \\ \text { Cover } & =25 \mathrm{~mm}\end{array}$

## ELEMENTS IN WATER TANK DESIGN:

1. Roof slab
2. Wall
3. Base slab

NOTE: walls and base slab comes under JOINTS which are of two types - RIGID and

## FLEXIBLE

THICKNESS OF WALL - Should not be less than

* 150 mm
* 30mm per metre depth +50 mm
* Thickness required limiting the tensile stress in concrete to $1.3 \mathrm{~N} / \mathrm{mm}^{2}\left(\mathrm{M}_{20}\right)$

Circular tanks - Circular tanks on ground may be designed either with flexible connection of wall with base or with the rigid connection of wall with base in flexible connection the walls are not monolithic with base whereas in rigid connection walls are monolithic with base.

## Circular tank with flexible joint between wall and base

The wall of such a tank will be designed as vertical cylinder subjected to water pressure. The intensity of water pressure at any depth $\mathrm{h}, \boldsymbol{p}=\boldsymbol{w} \boldsymbol{h}$ units per unit area. The corresponding hoop tension per meter height,

## $\underline{T=(W h * D) / 2}$

Where,
$\mathrm{W}=$ specific wt of water $\mathrm{h}=$ depth
$\mathrm{D}=$ diameter of tank

Problem (1) Design a circular tank resting on firm ground to the following particulars diameter of tank 3.5 m , depth of water 3 m , the wall and the base slab are not monolithic with each other. Specific weight of water is $9810 \mathrm{~N} / \mathrm{m}^{3 .}$ Use $\mathrm{M}_{25}$ grade concrete and Fe 415 steel bars

Step1: Given data
Diameter of tank=3.5m
Depth of water=3m
Specific wt of water $=9810 \mathrm{~N} / \mathrm{m}^{3}$
M25
Step2: Thickness of wall
Should not be less than 150 mm
30 mm per meter depth $+50 \mathrm{~mm}=(30 * 3)+50 \quad=140 \mathrm{~mm}$
Provide a thickness of 150 mm

Step3: Reinforcements
Consider the bottom 1 m height of wall
Pressure intensity corresponding to centre of bottom 1 m height of wall

$$
\begin{aligned}
\mathrm{P} \quad & =\mathrm{Wh} \\
& =9810 * 2.5 \\
& =24525 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Hoop tension $/ \mathrm{m}, \mathrm{T}=\mathrm{PD} / 2$

$$
\begin{aligned}
& =(2425 * 3.5) / 2 \\
& =42919 \mathrm{~N}
\end{aligned}
$$

Steel required for 1 m height $\left(\mathrm{A}_{\mathrm{st}}\right) \quad=\mathrm{T} /($ safe stress in steel $)$ For Fe 415 steel under direct tension, safe stress in steel $=150 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
\mathrm{A}_{\mathrm{st}} & =42919 / 150 \\
& =237 \mathrm{~mm}^{2}
\end{aligned}
$$

Min steel required $\left(\mathrm{A}_{\mathrm{st}} \min \right) \quad=0.3 \%$ gross area $($ gross area $=\mathrm{b} * \mathrm{~T}$

$$
\begin{aligned}
& =(0.3 / 100) * 1000 * 150 \\
& =450 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 10mm dia bars;
Spacing of 10 mm dia bars $=\left(1000 * 3.14 *\left(10^{2} / 4\right)\right) / 450$ $=174 \mathrm{~mm}$

Provide 10mm bars @ 170 mm c/c spacing
Vertical distribution steel $=0.3 \%$ gross

$$
=450 \mathrm{~mm}^{2}
$$

Step4: Base slab
Provide 150 mm thick slab with top and bottom mesh with 10 mm dia bars @ 250 mm c/c Circular tanks with a wall retained at base (rigid) condition: in this case the wall will resist water pressure partly hoop action and partly by cantilever action at a certain height from the bottom there will be cantilever action and at a higher level hoop action

## Methods to analyse

1. Dr. Reissners method
2. Carpenter's simplification of Dr. Reissners method
3. IS code

## IS CODE

$\mathrm{H}^{2} /(\mathrm{D} * \mathrm{t})$
Hoop tension per metre height $=$ coefficient $* W H D / 2 \mathrm{~N}$
BM per metre run $\quad=$ coefficient $* \mathrm{WH}^{3} \mathrm{~N} . \mathrm{m}$
Shear force at base of wall $=$ coefficient $* \mathrm{WH}^{2} \mathrm{~N}$

Problem (2) Design a circular tank 12 m diameter of 4 m height. The tank rest on firm ground and the walls of the tanks are retained (rigid) use $\mathrm{M}_{20}$ grade concrete and Fe 415 steel?

Solution:

Step1: given data
Diameter of tank $=12 \mathrm{~m}$
Height of tank $=4 \mathrm{~m}$
Walls are retained at base

Step2: Thickness of wall
Should not be less than 150 mm
30 mm per metre depth $+50 \mathrm{~mm}=(30 * 4)+50=170 \mathrm{~mm}$ provide
Step3: reinforcement
Hoop tension (refer under 0.6 H )

$$
\begin{aligned}
\mathrm{H}^{2} /(\mathrm{D} * \mathrm{t}) & =4^{2} /(2 * 0.17) \\
& =7.81
\end{aligned}
$$

Coefficient under 0.6 H
$6 \quad 0.5147 .8 \quad ? \quad 8$
0.575

Interpolate:
(0.514-(0.514-0.575)*(7.8-6)) / (8-6)

Coefficient for $7.8=0.57$

$$
\begin{array}{ll}
\text { Max hoop tension } & =\operatorname{coefficient}^{*}\left(\mathrm{~W}^{*} \mathrm{H}^{*} \mathrm{D}\right) / 2 \\
& =\left(0.57 * 9810^{*} 4^{*} 12\right) / 2 \\
& =134.2 * 10^{3} \mathrm{~N} \\
& =\mathrm{T} / \text { safe stress in steel } \\
\mathrm{A}_{\text {st }} & =134.2 * 10^{3} / 150 \\
& =394.6 \mathrm{~mm}^{2} \\
\text { Ast min } & =0.3 \% \text { gross area } \\
& =(0.3 / 100)^{*} 1000^{*} 170 \\
& =510 \mathrm{~mm}^{2}
\end{array}
$$

Provide 10 mm dia bars
Spacing of 10 mm dia bars $=\left(1000 * 3.14 *\left(10^{2} / 4\right)\right) / 894.6$
$=87.99 \mathrm{~mm}$
Provide 10mm dia bars @ 100 mm c/c Cantilever action
(BM) at 1 H :

| $\mathrm{H}^{2} /\left(\mathrm{D}^{*} \mathrm{t}\right)$ | 1 H |
| :--- | :---: |
| 6 | -0.01877 .8 |
| 8 |  |

Interpolate:
$(-0.0187-(-0.0187-(-0.0146)) *(7.8-6) /(8-6) \quad=-0.015$ Maximum cantilever moment $=$ Coefficient $* W H^{3}$

$$
\begin{aligned}
& =-0.015 * 98109 * 4^{3} \\
& =9417.6 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

$$
\text { Ast } \quad \begin{aligned}
& =\mathrm{BM} /(\text { safe stress } * 0.85 \mathrm{~d}) \quad(\mathrm{d}=\text { eff. Cover of } 30 \mathrm{~mm} \text { provide }) \\
& =9417.6 * 10^{3} /(150 * 0.85 * 140) \\
& =527.6 \mathrm{~mm}^{2}
\end{aligned}
$$

$\mathrm{A}_{\mathrm{st}} \min \quad=0.3 / 100 * 1000 * 170$

$$
=510 \mathrm{~mm}^{2}
$$

Provide 10 mm dia bars

$$
\begin{array}{ll}
\text { Spacing } & =\left(1000 * 3.14 *\left(10^{2} / 4\right)\right) / 527.6 \\
& =148 \mathrm{~mm} \mathrm{c} / \mathrm{c} \\
\text { Vertical steel distribution } & =0.3 \% \text { gross are } \\
& =510 \mathrm{~mm}^{2}
\end{array}
$$

Step 4: Base slab
Provide 150 mm thick slab with top and bottom mesh with 10 mm dia bars @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

## rectangular water tank resting on ground

Rectangular tanks are useful for smaller capacities and for large capacity circular water tank are preferred .let centre line dimension of the tank be ( $L^{*}$ ) where,
$\mathrm{L}=$ long plan dimension
$\mathrm{L}=$ short plan dimension
i. If ( $\mathrm{L} / 1<2$ ) the wall is designed as continuous horizontal slab subjected to a water pressure 'Wh 'per unit area.
ii. If ( $\mathrm{L} / \mathrm{l}>=2$ ) the long walls are considered as vertical continuous cantilevering for the whole pipe from base. The short walls are considered as spanning between long wall at end taken as fixed.

PROBLEM 1 A reinforced concrete tank is $6 \mathrm{~m} * 3 \mathrm{~m}$ with a max depth of 2.5 m of water. The tank rest on ground $150 \mathrm{~m} * 150 \mathrm{~mm}$. splays are provided at the junction of walls and base slab.

Design a tank using $\mathrm{M}_{20}$ grade concrete and Fe 250 steel.
Solution:
Step1: given data
$\mathrm{L}=6 \mathrm{~m}$
$\mathrm{L}=3 \mathrm{~m}$
Depth of water $=2.5 \mathrm{~m}$
$150 \mathrm{~mm} * 150 \mathrm{~mm}$ splays are provided
$\mathrm{M}_{20} \mathrm{fe} 415, \mathrm{~L} / \mathrm{l}=6 / 3=2$
Since the ratio is equal to 2 , the long walls will be designed as vertical cantilever and short wall as spanning between the long walls
Step2: design of long wall
They are designed as vertical continuous since splays are provided effective height
Effective ht $\quad=2.5-0.15=2.35 \mathrm{~m}$

Max BM per metre width of long wall $=\left(W^{*} H^{3}\right) / 6$
Where,
$\mathrm{W}=$ specific wt
$\mathrm{WH}^{3} / 6$

$$
\begin{aligned}
& =\left(9810 * 2.35^{3}\right) / 6 \\
& =21219 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

This BM produces tension near water face
Moment of resistance (M.R )= Qbd ${ }^{2}$
In code book
$\mathrm{M}_{20}$ : $\mathrm{Fe} 250 ; \mathrm{Q}=1.33$ \&
$\mathrm{M}_{20}$ : FE415; Q=1.16
Equate BM to M.R
$21219 * 10^{3}=1.33 * 1000 \mathrm{~d}^{2}$
$\mathrm{D} \quad=126 \mathrm{~mm}(130 \mathrm{~mm})$
Provide an effective cover of 30 mm
Overall thickness of wall $=130+30=160 \mathrm{~mm}$
$\mathrm{A}_{\text {st }}$

$$
=\mathrm{BM} /\left(\text { safe stress } * 0.85^{*} \mathrm{~d}\right)
$$

$$
=\left(21218 * 10^{3}\right) /(115 * 0.35 * 130)
$$

$$
=1670 \mathrm{~mm}^{2}
$$

$\mathrm{A}_{\mathrm{st}} \min$

$$
\begin{aligned}
& =0.3 \% \mathrm{GA} \\
& =(0.3 / 100) * 1000 * 160 \\
& =480 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide 12 mm dia bars
Spacing of 12 mm dia bars $\quad=\left(1000^{*} 3.14 *\left(12^{2} / 4\right)\right) / 1670$
$=68 \mathrm{~mm}$
Provide 12 mm dia bars @ 100 mm c/c
Pull in long wall for bottom 1 m ht $=(\mathrm{WHD}) / 2$

$$
\begin{aligned}
& =(9810 *(2.35-1) * 3) / 2 \\
& =19865 \mathrm{~N}
\end{aligned}
$$

$\mathrm{A}_{\text {st }} \quad=\mathrm{T} /$ (safe stress)
$=19865 / 115$
$=172 \mathrm{~mm}^{2}\left(\right.$ safe stress $\left.=115 \mathrm{~N} / \mathrm{mm}^{2}\right)$
$\mathrm{A}_{\mathrm{st}} \min$

$$
=480 \mathrm{~mm}^{2}
$$

Spacing of 12 mm dia bar

$$
=\left(1000 * 3.14 *\left(12^{2} / 4\right)\right) / 480
$$

$$
=235 \mathrm{~mm}
$$

Provide 12 mm dia bars @ $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

