
EE-317
Computer Engineering

2024-2025

Instructions: Introduction

Jalal Nazar Abdulbaqi, Ph.D.

jalal.abdulbaqi@tu.edu.iq

Tikrit University
Electrical Engineering Department

Instructions

2

Outline

• Introduction to Instruction set

•Arithmetic Operations

•Operands

•Signed and Unsigned Numbers

Instructions

3

Instruction Set
• A group of instructions for computer.

• Language of the machine.

• Different computers have different instruction sets
• But with many aspects in common

• Early computers had very simple instruction sets
• Simplified implementation

• Many modern computers also have simple instruction sets

Instructions

4

Instruction Set
• Assembly language is more primitive than higher level

languages
e.g., no sophisticated control flow

• The goal of computer designers is language which makes it
easy to build hardware and compiler

• Aim
• maximize performance
• minimize cost and energy.

Instructions

5

The RISC-V Instruction Set
• Used as the example throughout this course

• Developed at UC Berkeley as open ISA

• Now managed by the RISC-V Foundation (riscv.org)

• Typical of many modern ISAs
• See RISC-V Reference Data card

• Similar ISAs have a large share of embedded core market
• Applications in consumer electronics, network/storage equipment, cameras,

printers, …

Instructions

6

Arithmetic Operations
• Add and subtract, three operands

• Two sources and one destination

add a, b, c // a gets b + c

• All arithmetic operations have this form

• Design Principle 1: Simplicity favors regularity
• Regularity makes implementation simpler

• Simplicity enables higher performance at lower cost

Instructions

7

Arithmetic Example
• C code:

f = (g + h) - (i + j);

• Compiled RISC-V code:

add t0, g, h // temp t0 = g + h
add t1, i, j // temp t1 = i + j
sub f, t0, t1 // f = t0 - t1

Instructions

8

Register Operands
• Arithmetic instructions use register operands

• RISC-V has a 32 × 32-bit register file
• Use for frequently accessed data
• 32-bit data is called a “word”
• 64-bit data is called a “doubleword”

• 32 x 32-bit general purpose registers x0 to x31

• Design Principle 2: Smaller is faster
• c.f. main memory: millions of locations

Instructions

9

RISC-V Registers

• x0: the constant value 0

• x1: return address

• x2: stack pointer

• x3: global pointer

• x4: thread pointer

• x5–x7,x28–x31: temporaries

• x8: frame pointer

• x9,x18–x27: saved registers

• x10–x11: function arguments/results

• x12–x17: function arguments

Instructions

10

Register Operand Example
• C code:

f = (g + h) - (i + j);

• f, …, j in x19, x20, …, x23

• Compiled RISC-V code:

add x5, x20, x21
add x6, x22, x23
sub x19, x5, x6

Instructions

11

Memory Operands
• Main memory used for

composite data
• Arrays, structures, dynamic data

• To apply arithmetic operations
• Load values from memory into

registers
• Store result from register to

memory

• Memory is byte addressed
• Each address identifies an 8-bit byte

• RISC-V does not require
words to be aligned in
memory
• Unlike some other ISAs

• RISC-V is Little Endian
• Least-significant byte at least

address of a word
• c.f. Big Endian: most-significant

byte at least address

Instructions

12

Memory Operand Example
• C code:

A[12] = h + A[8];

• h in x21, base address of A in x22

• Compiled RISC-V code:
• Index 8 requires offset of 32

• 4 bytes per word

lw x9, 32(x22)
add x9, x21, x9
sw x9, 48(x22)

Instructions

13

Registers vs. Memory
• Registers are faster to access than memory

• Operating on memory data requires loads and stores
• More instructions to be executed

• Compiler must use registers for variables as much as possible
• Only spill to memory for less frequently used variables

• Register optimization is important!

Instructions

14

Immediate Operands
• Constant data specified in an instruction (12-bit)

addi x22, x22, 4

• Make the common case fast
• Small constants are common

• Immediate operand avoids a load instruction

Instructions

15

Unsigned Binary Integers
• Given an n-bit number

• Range: 0 to +2n – 1

• Example
• 0000 0000 … 0000 1011two

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 11ten

• Using 32 bits: 0 to (232-1) = +4,294,967,295ten

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx  




 

Instructions

16

2s-Complement Signed Integers
• Given an n-bit number

• Range: –2n – 1 to +2n – 1 – 1

• Example
• 1111 1111 … 1111 1100two

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –4ten

• Using 32 bits: −232-1 = −2.147,483,648ten

 to +232-1-1 = 2.147,483,647ten

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx  




 

Instructions

17

2s-Complement Signed Integers
• Bit 31 is sign bit

• 1 for negative numbers

• 0 for non-negative numbers

• –(–2n – 1) can’t be represented

• Non-negative numbers have the same unsigned and 2s-complement representation

• Some specific numbers
• 0: 0000 0000 … 0000

• –1: 1111 1111 … 1111

• Most-negative: 1000 0000 … 0000

• Most-positive: 0111 1111 … 1111

Instructions

18

Signed Negation
• Complement and add 1

• Complement means 1 → 0, 0 → 1

• Example: negate +2
• +2 = 0000 0000 … 0010two

• –2 = 1111 1111 … 1101two + 1
 = 1111 1111 … 1110two

x1x

11111...111xx 2





Instructions

19

Sign Extension
• Representing a number using more bits

• Preserve the numeric value

• Replicate the sign bit to the left
• c.f. unsigned values: extend with 0s

• Examples: 8-bit to 16-bit
• +2: 0000 0010 => 0000 0000 0000 0010

• –2: 1111 1110 => 1111 1111 1111 1110

● In RISC-V instruction set
● lb: sign-extend loaded byte
● lbu: zero-extend loaded byte

Introduction

Overflow
• Overflow occurs when results of an operation larger than be

in a register.

1 1 1 1

0 0 0 1

1 0 0 0 0Overflow

Unsigned
15

1

0

Introduction

Overflow
• Overflow occurs when the leftmost retained bit of the binary bit pattern is

not the same as the infinite number of digits to the left (the sign bit is
incorrect): a 0 on the left of the bit pattern when the number is negative or
a 1 when the number is positive.

0 1 1 1

0 0 0 1

1 0 0 0

Signed
1 0 0 0

1 0 0 1

0 0 0 1

7

1

-8

-8

-7

1

Overflow

Introduction

Multiplication and Division
• There are no instructions for multiplications and division operations in

RISC-V 32-bit Integer base version (RV32I).

• Instead, we can use shift instructions to multiply or divide by 2i i times.

• slli - Shift left logical immediate
• Shift left and fill with 0 bits

• slli by i bits multiplies by 2i

• srli - Shift right logical immediate
• Shift right and fill with 0 bits

• srli by i bits divides by 2i (unsigned only)

Introduction

Multiplication and Division

8 4 2 1
23 22 21 20

0 0 1 0

8 4 2 1
23 22 21 20

0 0 0 1

8 4 2 1
23 22 21 20

0 1 0 0

srli // Shift to rightslli // Shift to left

2 14 22

Introduction

Multiplication and Division

8 4 2 1
23 22 21 20

0 0 1 0

8 4 2 1
23 22 21 20

0 1 0 0

slli x6, x6, 2 // Shift to left twice

24 2

8 4 2 1

23 22 21 20

1 0 0 0

8 2

Introduction

Number Systems Conversion
• Binary to Decimal:

10110two
 = 1 24  0 23  122  121  020

 = 22ten

Introduction

Number Systems Conversion
• Decimal to Binary:

37ten → ?two

37 / 2 = 18 reminder 1 LSB – Least Significant Bit
18 / 2 = 9 reminder 0
 9 / 2 = 4 reminder 1
 4 / 2 = 2 reminder 0
 2 / 2 = 1 reminder 0
 1 / 2 = 0 reminder 1 MSB – Most Significant Bit

37ten = 100101two

Introduction

Number Systems Conversion
• Hexadecimal to Decimal:

374Fhex
 = 3 163  7162  4161  15160

 = 14159ten

Introduction

Number Systems Conversion
• Decimal to Hexadecimal :

12345ten → ?hex

12345 / 16 = 771 reminder 9 LSB
 771 / 16 = 48 reminder 3
 48 / 16 = 3 reminder 0
 3 / 16 = 0 reminder 3 MSB

12345ten = 3039hex

29

Introduction

Number Systems Conversion
• Hexadecimal and Binary

• Compact representation of bit strings
• 4 bits per hex digit

Introduction

Number Systems Conversion
• Binary to Hexadecimal:

10110101two = ?hex → 1011 0101two = B5hex

B 5

Introduction

Number Systems Conversion
• Hexadecimal to Binary:

374Fhex = ?two → 3 7 4 F = 0011 0111 0100 1111two

0011 0111 0100 1111

Introduction

Number Systems Notion in RISC-V

• 10110101two → 0b10110101

• 374Fhex → 0x374F

• 12345ten → 12345

• Examples:
addi x5, x0, 0b10110101
addi x6, x0, 0x374F
addi x4, x0, 12345

Introduction

Summary
• The chosen instruction set is RISC-V because of its simplicity

and generality so that other architectures can be realized

• There are two arithmetic operations in RV32I:
Addition - add and Subtraction – sub

• There are three types of operands: registers, memory and
immediate

• Both positive and negative integers can be represented
within a computer and the best way is two’s complement

