
EE-317
Computer Engineering

2024-2025

Instructions: Procedure Calling

Jalal Nazar Abdulbaqi, Ph.D.

jalal.abdulbaqi@tu.edu.iq

Tikrit University
Electrical Engineering Department

Instructions

Outline
• Procedure Calling

• Stack (Memory Layout)

• Character Data (String)

• Addressing

3

Instructions

Procedure Call Instructions
• Procedure call: jump and link
jal x1, ProcedureLabel

• Address of following instruction put in x1
• Jumps to target address

• Procedure return: jump and link register
jalr x0, 0(x1)

• Like jal, but jumps to 0 + address in x1
• Use x0 as rd (x0 cannot be changed)
• Can also be used for computed jumps

• e.g., for case/switch statements

Instructions

Procedure Calling
Main Program (Caller) Procedure (Callee)

jal x1, Callee Add.

 jalr x0, 0(x1)

Address: x1
Data: x10-x17

x10, x11 – arguments/ return
x12 - x17 – arguments

.

.
PC-4
PC
PC+4
PC+8
.
.
.

Program Counter (PC)
Register hold the address current
instruction being executed

5

Instructions

Procedure Calling
Steps required

1. Place parameters in registers x10 to x17
2. Transfer control to procedure
3. Acquire storage for procedure
4. Perform procedure’s operations
5. Place result in register for caller
6. Return to place of call (address in x1)

6

Instructions

Register Usage
• x5–x7, x28–x31: temporary registers

• Not preserved by the callee

• x8–x9, x18–x27: saved registers
• If used, the callee saves and restores them

Instructions

Stack
• it is a last-in-fist-out (LIFO) queue saved in the memory.

• Stack Pointer (sp)
register hold the most recent address in stack – x2 in RISC-V

• Why we need Stack for Procedure Calling?
• we must save the values of the registers that we will use in the

procedure calculation.
• in case we need more than 8 arguments.

8

Instructions

Leaf Procedure Example - C code
int leaf_example (int g, int h, int i, int j){
 int f;
 f = (g + h) - (i + j);
 return f;
}

Arguments g, …, j in x10, …, x13
• f in x20
• temporaries x5, x6
• Need to save x5, x6, x20 on stack

9

Instructions

Leaf Procedure Example - RISC-V code
addi x2,x2,-12
sw x5,8(x2)
sw x6,4(x2)
sw x20,0(x2)
add x5,x10,x11
add x6,x12,x1
sub x20,x5,x6
addi x10,x20,0
lw x20,0(x2)
lw x6,4(x2)
lw x5,8(x2)
addi x2,x2,12
jalr x0,0(x1)

Save x5, x6, x20 on stack

x5 = g + h
x6 = i + j
f = x5 – x6
copy f to return register (x10)

Restore x5, x6, x20 from stack

Return to caller

10

Instructions

Local Data on the Stack

11

Instructions

Non-Leaf Procedures
• Procedures that call other procedures

• For nested call, caller needs to save on the stack:
• Its return address
• Any arguments and temporaries needed after the call

• Restore from the stack after the call

12

Instructions

Non-Leaf Procedure Example - C code
int fact (int n)
{
 if (n < 1) return 1;
 else return (n * fact(n - 1));
}

• Argument n in x10
• Result in x10

13

Instructions

Non-Leaf Procedure Example - RISC-V code

Save return address and n on stack

x5 = n - 1

Else, set return value to 1

n = n - 1

if n-1 >= 0, go to L1

call fact(n-1)

Pop stack, don’t bother restoring values
Return

Restore caller’s n
Restore caller’s return address
Pop stack
return n * fact(n-1)
return

move result of fact(n - 1) to x6

Fact: addi sp,sp,-8
 sw x1,4(sp)
 sw x10,0(sp)
 addi x5,x10,-1
 bge x5,x0,L1
 addi x10,x0,1
 addi sp,sp,8
 jalr x0,0(x1)

L1: addi x10,x10,-1
 jal x1,fact
 addi x6,x10,0
 lw x10,0(sp)
 lw x1,4(sp)
 addi sp,sp,8
 mul x10,x10,x6
 jalr x0,0(x1)

Instructions

Memory Layout
• Text: program code
• Static data: global variables

• e.g., static variables in C, constant
arrays and strings

• x3 (global pointer) initialized to
address allowing ±offsets into this
segment

• Dynamic data: heap
• E.g., malloc in C, new in Java

• Stack: automatic storage

Instructions

Character Data
• Byte-encoded character sets

• ASCII: 128 characters
• 95 graphic, 33 control

• Latin-1: 256 characters
• ASCII, +96 more graphic characters

• Unicode: 32-bit character set
• Used in Java, C++ wide characters, …
• Most of the world’s alphabets, plus symbols
• UTF-8, UTF-16: variable-length encodings

Instructions

RISC-V Byte / Halfword / Word Operations
• Load byte/halfword/word: Sign extend to 32 bits in rd

lb rd, offset(rs1)
lh rd, offset(rs1)
lw rd, offset(rs1)

• Load byte/halfword/word unsigned: Zero extend to 32 bits in rd
lbu rd, offset(rs1)
lhu rd, offset(rs1)
lwu rd, offset(rs1)

• Store byte/halfword/word: Store rightmost 8/16/32 bits
sb rs2, offset(rs1)
sh rs2, offset(rs1)
sw rs2, offset(rs1)

Instructions

String Copy Example - C code

void strcpy (char x[], char y[])
{ size_t i;
 i = 0;
 while ((x[i] = y[i]) != '\0')
 i += 1;
}

• Null-terminated string

Base address of arrays x and y are found in x10 and x11,

while i is in x19

Instructions

String Copy Example - RISC-V code
strcpy:

addi sp,sp,-4 # adjust stack for 1 word
sw x19,0(sp) # push x19
add x19,x0,x0 # i=0

L1: add x5,x19,x11 # x5 = addr of y[i]
lbu x6,0(x5) # x6 = y[i]
add x7,x19,x10 # x7 = addr of x[i]
sb x6,0(x7) # x[i] = y[i]
beq x6,x0,L2 # if y[i] == 0 then exit
addi x19,x19,1 # i = i + 1
jal x0,L1 # next iteration of loop

L2: lw x19,0(sp) # restore saved x19
addi sp,sp,4 # pop 1 word from stack
jalr x0,0(x1) # and return

Instructions

32-bit Constants
• Most constants are small

• 12-bit immediate is sufficient

• For the occasional 32-bit constant

lui rd, constant
• Copies 20-bit constant to bits [31:12] of rd
• Clears bits [11:0] of rd to 0

bits Data & Instructions Hexa Decimal

32 00000000 00111101 00000101 00000000 3D0500 3998976

lui x19, 0x3D0

20 00000000 00111101 00000101 00000000 3D0 976

addi x19, x19, 0x500

12 00000000 00111101 00000101 00000000 500 1280

Instructions

Branch Addressing
• Branch instructions specify

• Opcode, two registers, target address

• Most branch targets are near branch
• Forward or backward

• SB format:

• PC-relative addressing
• Target address = PC + immediate  2

Instructions

Jump Addressing
• Jump and link (jal) target uses 20-bit immediate for larger

range

• UJ format:

• For long jumps, e.g., to 32-bit absolute address
• lui: load address[31:12] to temp register
• jalr: add address[11:0] and jump to target

Instructions

RISC-V Addressing Summary
1.Immediate addressing, where the operand is a constant

within the instruction itself.

2.Register addressing, where the operand is a register.

3.Base or displacement addressing, where the operand is at
the memory location whose address is the sum of a register
and a constant in the instruction.

4.PC-relative addressing, where the branch address is the
sum of the PC and a constant in the instruction.

Instructions

RISC-V Addressing Summary

Instructions

RISC-V Encoding Summary

