
EE-317
Computer Engineering

2024-2025

Parallel Processors

Jalal Nazar Abdulbaqi, Ph.D.

jalal.abdulbaqi@tu.edu.iq

Tikrit University
Electrical Engineering Department

2

Parallel Processors

Outline
• Introduction
• The Difficulty of Creating Parallel Processing Programs
• SISD, MIMD, SIMD, SPMD, and Vector
• Hardware Multithreading
• Multicore and Other Shared Memory Multiprocessors

4

Parallel Processors

Introduction
● Goal: connecting multiple computers to get higher performance

• Multiprocessors
• Scalability, availability, power efficiency

● Cluster
• Set of computers linked via LAN as a single large multiprocessor.

● Multicore microprocessors
• Chips with multiple processors (cores)

● Shared Memory Processor(SMP)
• Parallel processor with single physical address space

● Parallel processing program
• Single program run on multiple processors

● Task-level (process-level) parallelism
• High throughput for independent jobs

5

Parallel Processors

Multiprocssor
● A computer system with at least two processors.

6

Parallel Processors

Multicore Microprocessor
● A microprocessor containing multiple processors (“cores”)

in a single integrated circuit (Chip).

7

Parallel Processors

Shared Memory Processors (SMPs)
● A parallel processor with a single physical address space.

8

Parallel Processors

Cluster
● A set of computers connected over a local area network

that function as a single large multiprocessor.

9

Parallel Processors

Parallel Processing Program
A single program that runs on multiple processors simultaneously.

Task 1.1 Task 2.1

Task 3.1Task 2.2

Task 3.2 Task 1.2

Task 3.3Task 2.3

Core 1 Core 2

Program
(Process)

10

Parallel Processors

Task-level (Process-level) Parallelism
● Utilizing multiple processors by running independent

programs simultaneously.

Task 1.1 Task 1.1

Task 2.2Task 1.1

Task 1.2 Task 1.2

Task 1.2Task 3.1

Core 1 Core 2

Program 1
(Process 1)

Program 2
(Process 2)

Program 3
(Process 3)

11

Parallel Processors

Hardware and Software

● Sequential/concurrent software can run on serial/parallel
hardware

• Challenge: making effective use of parallel hardware

 Software

Sequential Concurrent

Hardware

Serial
Matrix Multiply written in Matlab

running on an Intel Pentium 4
Windows Vista OS running

on Intel Pentium 4

Parallel
Matrix Multiply written in Matlab

running on an Intel Core i7
Windows Vista OS running

on Intel Core i7

12

Parallel Processors

Parallel Programming
● Parallel software is the problem
● Need to get significant performance or energy efficiency

improvement
• Otherwise, just use a faster uniprocessor, since it’s

easier!
● Difficulties

• Partitioning (split tasks equally)
• Coordination (Balancing the load evenly + synchronizing)
• Communications overhead

13

Parallel Processors

Amdahl’s Law
• Sequential part can limit speedup
• Example: 100 processors, 90× speedup?

• Tnew = Tparallelizable/100 + Tsequential

• Solving: Fparallelizable = 0.999

• Need sequential part to be 0.1% of original time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz






14

Parallel Processors

Scaling Example
• Workload: sum of 10 scalars, and 10 × 10 matrix sum

• Speed up from 10 to 40 processors
• Assume only the matrix sum is parallelizable
• Assumes load can be balanced across processors

• Single processor: Time = (10 + 100) × tadd = 110 tadd
• 10 processors

• Time = 10 × tadd + 100/10 × tadd = 20 × tadd

• Speedup = 110/20 = 5.5 (5.5 / 10 = 55% of potential)
• 40 processors

• Time = 10 × tadd + 100/40 × tadd = 12.5 × tadd

• Speedup = 110/12.5 = 8.8 (8.8 / 40 = 22% of potential) - Strong scaling

15

Parallel Processors

Scaling Example (cont)

• What if matrix size is 20 × 20?

• Single processor: Time = (10 + 400) × tadd = 410 × tadd

• 10 processors
• Time = 10 × tadd + 400/10 × tadd = 50 × tadd

• Speedup = 410/50 = 8.2 (8.2/10 = 82% of potential)

• 40 processors
• Time = 10 × tadd + 400/40 × tadd = 20 × tadd

• Speedup = 410/20 = 20.5 (20.5 / 40 = 51% of potential) - Weak scaling

16

Parallel Processors

Strong vs Weak Scaling

• Strong scaling: measuring speed-up while keeping the
problem size fixed

• Weak scaling: problem size proportional to number of
processors
• 10 processors, 10 × 10 matrix

• Time = 10 × tadd + 100/10 × tadd = 20 × tadd

• 100 processors, 32 × 32 matrix
• Time = 10 × tadd + 1024/100 × tadd = 20.24 × tadd

• Constant performance in this example

17

Parallel Processors

Flynn's taxonomy

• Single Instruction Single Data (SISD) ==> uniprocessor
• Single Instruction Multiple Data (SIMD):

The same instruction is applied to many data streams (e. g.
MMX in x86 and Vector Processor).

• Multiple Instruction Single Data (MISD):

perform a series of computations on a single data stream in a
pipelined.

• Multiple Instruction Multiple Data (MIMD) ==> multiprocessor

18

Parallel Processors

Flynn's taxonomy
(Instruction &
 Data Streams)

19

Parallel Processors

Instruction and Data Streams

Flynn's taxonomy
Data Streams

Single Multiple

Instruction
Streams

Single SISD
Intel Pentium 4

SIMD
SSE Instructions of x86

Multiple MISD
No examples today

MIMD
Intel Xeon e5345

20

Parallel Processors

MIMD

• MIMD implemented by two methods:
• Single Program Multiple Data (SPMD)

• A parallel program on a MIMD computer
• Conditional code for different processors
• Most common parallel programming style

• Multiple Program Multiple Data (MPMD)
• Multiple processors simultaneously operating at least

two independent programs

21

Parallel Processors

SIMD
● Operate elementwise on vectors of data

• e.g. MMX and SSE instructions in x86 & Vector processors
• Multiple data elements in 128-bit wide registers

● All processors execute the same instruction at the same time
• Each with different data address, etc.

● Simplifies synchronization
● Reduced instruction control hardware
● Works best for highly data-parallel applications

22

Parallel Processors

SIMD in x86: Multimedia Extensions

• Multimedia Extension (MMX)
• subword parallelism for narrow integer data

• Streaming SIMD Extensions (SSE)
• more instructions were added with single precision floating-point

• Advanced Vector Extensions (AVX)
• supports the simultaneous execution of eight 64-bit floating-point

numbers

• SPMD: Single Program Multiple Data
• A parallel program on a MIMD computer
• Conditional code for different processors

23

Parallel Processors

Vector Processors
• Highly pipelined function (execution) units
• Stream data from/to vector registers to units

• Data collected from memory into registers
• Results stored from registers to memory

• Example: Vector extension to RISC-V
• v0 to v31: 32 × 64-element registers, (64-bit elements)
• Vector instructions

• fld.v, fsd.v: load/store vector
• fadd.d.v: add vectors of double
• fadd.d.vs: add scalar to each element of vector of double

• Significantly reduces instruction-fetch bandwidth

24

Parallel Processors

Example: DAXPY (Y = a × X + Y)
●Conventional RISC-V code:
 fld f0,a(x3) // load scalar a

 addi x5,x19,512 // end of array X

 loop: fld f1,0(x19) // load x[i]

 fmul.d f1,f1,f0 // a * x[i]

 fld f2,0(x20) // load y[i]

 fadd.d f2,f2,f1 // a * x[i] + y[i]

 fsd f2,0(x20) // store y[i]

 addi x19,x19,8 // increment index to x

 addi x20,x20,8 // increment index to y

 bltu x19,x5,loop // repeat if not done

● Vector RISC-V code:
 fld f0,a(x3) // load scalar a

 fld.v v0,0(x19) // load vector x

 fmul.d.vs v0,v0,f0 // vector-scalar multiply

 fld.v v1,0(x20) // load vector y

 fadd.d.v v1,v1,v0 // vector-vector add

 fsd.v v1,0(x20) // store vector y

25

Parallel Processors

Vector vs. Scalar
• Vector architectures and compilers

• Simplify data-parallel programming
• Explicit statement of absence of loop-carried dependences

• Reduced checking in hardware
• Regular access patterns benefit from interleaved and burst

memory
• Avoid control hazards by avoiding loops

• More general than ad-hoc media extensions (such as MMX,
SSE)
• Better match with compiler technology

26

Parallel Processors

Vector vs. Multimedia Extensions
• Vector instructions have a variable vector width, multimedia

extensions have a fixed width
• Vector instructions support strided access, multimedia extensions do

not
• Vector units can be combination of pipelined and arrayed functional

units:

27

Parallel Processors

Multithreading

Source: https://en.wikipedia.org/wiki/Thread_(computing)

28

Parallel Processors

Multithreading
• Performing multiple threads of execution in parallel

• Replicate registers, PC, etc.
• Fast switching between threads

• Fine-grain multithreading
• Switch threads after each cycle
• Interleave instruction execution
• If one thread stalls, others are executed

• Coarse-grain multithreading
• Only switch on long stall (e.g., L2-cache miss)
• Simplifies hardware, but doesn’t hide short stalls (e.g., data hazards)

29

Parallel Processors

Simultaneous Multithreading
• In multiple-issue dynamically scheduled pipelined processor

• Schedule instructions from multiple threads
• Instructions from independent threads execute when

function units are available
• Within threads, dependencies handled by scheduling and

register renaming
• Example: Intel Pentium-4 HT

• Two threads: duplicated registers, shared function units
and caches

30

Parallel Processors

Multithreading Example

32

Parallel Processors

Shared Memory

• Shared Memory Multiprocessor (SMP)
• Hardware provides single physical address space for all processors
• Synchronize shared variables using locks
• Memory access time

• UMA (uniform) vs. NUMA (nonuniform)

33

Parallel Processors

Shared Memory
• Synchronization

The process of coordinating the behavior of two or more processes,
which may be running on different processors.

• Lock

A synchronization device that allows access to data to only one
processor at a time.

• Single address space multiprocessors styles:
• Uniform Memory Access (UMA)

• Same access time for all processors

• NonUniform Memory Access (NUMA)
• Different access time for different processors

