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Parallel Processors

Outline
• Introduction
• The Difficulty of Creating Parallel Processing Programs
• SISD, MIMD, SIMD, SPMD, and Vector
• Hardware Multithreading
• Multicore and Other Shared Memory Multiprocessors
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Parallel Processors

Introduction
● Goal: connecting multiple computers to get higher performance

• Multiprocessors
• Scalability, availability, power efficiency

● Cluster 
• Set of computers linked via LAN as a single large multiprocessor.

● Multicore microprocessors
• Chips with multiple processors (cores)

● Shared Memory Processor(SMP)
• Parallel processor with single physical address space

● Parallel processing program
• Single program run on multiple processors

● Task-level (process-level) parallelism
• High throughput for independent jobs
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Parallel Processors

Multiprocssor
● A computer system with at least two processors. 
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Multicore Microprocessor
● A microprocessor containing multiple processors (“cores”) 

in a single integrated circuit (Chip). 
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Shared Memory Processors (SMPs)
● A parallel processor with a single physical address space.
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Cluster
● A set of computers connected over a local area network 

that function as a single large multiprocessor.
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Parallel Processing Program
A single program that runs on multiple processors simultaneously.

Task 1.1 Task 2.1

Task 3.1Task 2.2

Task 3.2 Task 1.2

Task 3.3Task 2.3

Core 1 Core 2

Program 
(Process)
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Task-level (Process-level) Parallelism
● Utilizing multiple processors by running independent 

programs simultaneously.

Task 1.1 Task 1.1

Task 2.2Task 1.1

Task 1.2 Task 1.2

Task 1.2Task 3.1

Core 1 Core 2

Program 1 
(Process 1)

Program 2 
(Process 2)

Program 3 
(Process 3)
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Hardware and Software

● Sequential/concurrent software can run on serial/parallel 
hardware

• Challenge: making effective use of parallel hardware

           Software

Sequential Concurrent

Hardware

Serial
Matrix Multiply written in Matlab 

running on an Intel Pentium 4
Windows Vista OS running 

on Intel Pentium 4

Parallel
Matrix Multiply written in Matlab 

running on an Intel Core i7
Windows Vista OS running 

on Intel Core i7
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Parallel Programming
● Parallel software is the problem
● Need to get significant performance  or energy efficiency 

improvement
• Otherwise, just use a faster uniprocessor, since it’s 

easier!
● Difficulties

• Partitioning (split tasks equally)
• Coordination (Balancing the load evenly + synchronizing)
• Communications overhead
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Amdahl’s Law
• Sequential part can limit speedup
• Example: 100 processors, 90× speedup?

• Tnew = Tparallelizable/100 + Tsequential

 

• Solving: Fparallelizable = 0.999

• Need sequential part to be 0.1% of original time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz





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Scaling Example
• Workload: sum of 10 scalars, and 10 × 10 matrix sum

• Speed up from 10 to 40 processors
• Assume only the matrix sum is parallelizable
• Assumes load can be balanced across processors

• Single processor: Time = (10 + 100) × tadd = 110 tadd 
• 10 processors

• Time = 10 × tadd + 100/10 × tadd = 20 × tadd

• Speedup = 110/20 = 5.5 (5.5 / 10 = 55% of potential)
• 40 processors

• Time = 10 × tadd + 100/40 × tadd = 12.5 × tadd

• Speedup = 110/12.5 = 8.8 (8.8 / 40 = 22% of potential) - Strong scaling
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Scaling Example (cont)

• What if matrix size is 20 × 20?

• Single processor: Time = (10 + 400) × tadd = 410 × tadd  

• 10 processors
• Time = 10 × tadd + 400/10 × tadd = 50 × tadd

• Speedup = 410/50 = 8.2 (8.2/10 = 82% of potential)

• 40 processors
• Time = 10 × tadd + 400/40 × tadd = 20 × tadd

• Speedup = 410/20 = 20.5 (20.5 / 40 = 51% of potential) - Weak scaling
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Strong vs Weak Scaling

• Strong scaling: measuring speed-up while keeping the 
problem size fixed

• Weak scaling: problem size proportional to number of 
processors
• 10 processors, 10 × 10 matrix

• Time = 10 × tadd + 100/10 × tadd  = 20 × tadd

• 100 processors, 32 × 32 matrix
• Time = 10 × tadd + 1024/100 × tadd = 20.24 × tadd

• Constant performance in this example
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Flynn's taxonomy

• Single Instruction Single Data (SISD) ==> uniprocessor
• Single Instruction Multiple Data (SIMD): 

The same instruction is applied to many data streams (e. g. 
MMX in x86 and Vector Processor).

• Multiple Instruction Single Data (MISD):

perform a series of computations on a single data stream in a 
pipelined.

• Multiple Instruction Multiple Data (MIMD) ==> multiprocessor
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Flynn's taxonomy 
(Instruction &
     Data Streams)
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Instruction and Data Streams

Flynn's taxonomy
Data Streams     

Single Multiple

Instruction 
Streams

Single SISD
Intel Pentium 4

SIMD
SSE Instructions of x86

Multiple MISD
No examples today

MIMD
Intel Xeon e5345
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MIMD

• MIMD implemented by two methods:
• Single Program Multiple Data (SPMD)

• A parallel program on a MIMD computer
• Conditional code for different processors
• Most common parallel programming style

• Multiple Program Multiple Data (MPMD)
• Multiple processors simultaneously operating at least 

two independent programs
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SIMD
● Operate elementwise on vectors of data

• e.g.  MMX and SSE instructions in x86 & Vector processors
• Multiple data elements in 128-bit wide registers

● All processors execute the same instruction at the same time
• Each with different data address, etc.

● Simplifies synchronization
● Reduced instruction control hardware
● Works best for highly data-parallel applications
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SIMD in x86: Multimedia Extensions

• Multimedia Extension (MMX)
• subword parallelism for narrow integer data

• Streaming SIMD Extensions (SSE)
• more instructions were added with single precision floating-point

• Advanced Vector Extensions (AVX)
• supports the simultaneous execution of eight 64-bit floating-point 

numbers

• SPMD: Single Program Multiple Data
• A parallel program on a MIMD computer
• Conditional code for different processors
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Vector Processors
• Highly pipelined function (execution) units
• Stream data from/to vector registers to units

• Data collected from memory into registers
• Results stored from registers to memory

• Example: Vector extension to RISC-V
• v0 to v31: 32 × 64-element registers, (64-bit elements)
• Vector instructions

• fld.v, fsd.v: load/store vector
• fadd.d.v: add vectors of double
• fadd.d.vs: add scalar to each element of vector of double

• Significantly reduces instruction-fetch bandwidth
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Example: DAXPY (Y = a × X + Y)
●Conventional RISC-V code:
       fld    f0,a(x3)     // load scalar a

       addi   x5,x19,512   // end of array X

 loop: fld    f1,0(x19)    // load x[i]

       fmul.d f1,f1,f0     // a * x[i]

       fld    f2,0(x20)    // load y[i]

       fadd.d f2,f2,f1     // a * x[i] + y[i]

       fsd    f2,0(x20)    // store y[i]

       addi   x19,x19,8    // increment index to x

       addi   x20,x20,8    // increment index to y

       bltu   x19,x5,loop  // repeat if not done

●  Vector RISC-V code:
       fld       f0,a(x3)    // load scalar a

       fld.v     v0,0(x19)   // load vector x

       fmul.d.vs v0,v0,f0    // vector-scalar multiply

       fld.v     v1,0(x20)   // load vector y

       fadd.d.v  v1,v1,v0    // vector-vector add

       fsd.v     v1,0(x20)   // store vector y
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Vector vs. Scalar
• Vector architectures and compilers

• Simplify data-parallel programming
• Explicit statement of absence of loop-carried dependences

• Reduced checking in hardware
• Regular access patterns benefit from interleaved and burst 

memory
• Avoid control hazards by avoiding loops

• More general than ad-hoc media extensions (such as MMX, 
SSE)
• Better match with compiler technology
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Vector vs. Multimedia Extensions
• Vector instructions have a variable vector width, multimedia 

extensions have a fixed width
• Vector instructions support strided access, multimedia extensions do 

not
• Vector units can be combination of pipelined and arrayed functional 

units:
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Multithreading

Source: https://en.wikipedia.org/wiki/Thread_(computing)
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Multithreading
• Performing multiple threads of execution in parallel

• Replicate registers, PC, etc.
• Fast switching between threads

• Fine-grain multithreading
• Switch threads after each cycle
• Interleave instruction execution
• If one thread stalls, others are executed

• Coarse-grain multithreading
• Only switch on long stall (e.g., L2-cache miss)
• Simplifies hardware, but doesn’t hide short stalls (e.g., data hazards)
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Simultaneous Multithreading
• In multiple-issue dynamically scheduled pipelined processor

• Schedule instructions from multiple threads
• Instructions from independent threads execute when 

function units are available
• Within threads, dependencies handled by scheduling and 

register renaming
• Example: Intel Pentium-4 HT

• Two threads: duplicated registers, shared function units 
and caches
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Multithreading Example
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Shared Memory

• Shared Memory Multiprocessor (SMP)
• Hardware provides single physical address space for all processors
• Synchronize shared variables using locks
• Memory access time

• UMA (uniform) vs. NUMA (nonuniform)
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Shared Memory
• Synchronization 

The process of coordinating the behavior of two or more processes, 
which may be running on different processors.

• Lock 

A synchronization device that allows access to data to only one 
processor at a time.

• Single address space multiprocessors styles:
• Uniform Memory Access (UMA)

• Same access time for all processors

• NonUniform Memory Access (NUMA)
• Different access time for different processors


