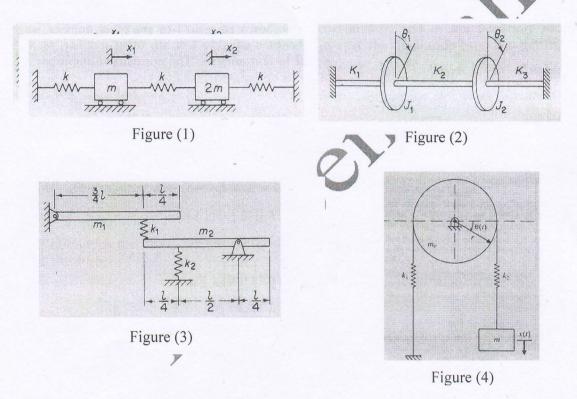
## The Equations Of Motion Of

## **Two Degree Of Freedom Systems**

Systems that required two independent coordinates to describe their motion are called two defree of freedom

We begin by deriving the differential equations of motion for the two-degree-of-freedom system.

### Examples



**Example** Determine the mass matrix and stiffness matrix of the system shown in Figure (1), then find the natural frequencies and mode shapes.

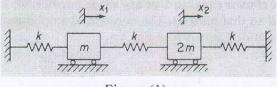


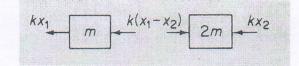
Figure (1)

Solution Let  $x_1(t) > x_2(t)$ 

### Vibration – Fourth Class / University of Tikrit (22-23)

### **Mechanical Engineering**

From the free body diagram for  $m_1$ 



From the free body diagram for  $m_2$ 

Equations (1) and (2) are equations of motion

In solving vibration problems, matrix methods are indispensable,

Similarly, Equations (1) and (2) have the matrix form  $m_1 = m$ ,  $m_2 = 2m$ 

$$\begin{bmatrix} m & 0 \\ 0 & 2m \end{bmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} + \begin{bmatrix} 2k & -k \\ -k & 2k \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$M\ddot{x} + Kx = 0$$

in which

$$\mathbf{M} = \begin{bmatrix} m & 0 \\ 0 & 2m \end{bmatrix} = \text{mass matrix}, \qquad \mathbf{K} = \begin{bmatrix} 2k & -k \\ -k & 2k \end{bmatrix} = \text{stiffness matrix}$$

To find the natural frequencies and mode shapes, let

$$\begin{aligned} x_1(t) &= A_1 e^{i\omega t}, \qquad x_2(t) = A_2 e^{i\omega t} \\ \ddot{x}_1(t) &= -A_1 \omega^2 e^{i\omega t} \quad , \qquad \ddot{x}_2(t) = -A_2 \omega^2 e^{i\omega t} \end{aligned}$$

Then from the equations (1) and (2)

$$(2k - \omega^2 m)A_1 - kA_2 = 0 \qquad \dots \dots \dots (3)$$

$$-kA_1 + (2k - 2\omega^2 m)A_2 = 0 \qquad \dots \dots \dots \dots \dots (4)$$

By putting Equations (3) and (4) as a matrix form substitution these Equations into Equation (1)

$$\begin{bmatrix} (2k - \omega^2 m) & -k \\ -k & (2k - 2\omega^2 m) \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

since  $\begin{cases} A_1 \\ A_2 \end{cases} \neq \begin{cases} 0 \\ 0 \end{cases}$ 

### Vibration – Fourth Class / University of Tikrit (22-23)

### **Mechanical Engineering**

then

$$\begin{vmatrix} (2k - \omega^2 m) & -k \\ -k & (2k - 2\omega^2 m) \end{vmatrix} = 0$$

which represents a quadratic equation in  $\omega^2 = \lambda$  called the *characteristic equation*, or *frequency* equation.

$$\lambda^2 - \left(3\frac{k}{m}\right)\lambda + \frac{3}{2}\left(\frac{k}{m}\right)^2 = 0$$

The two roots  $\lambda_1$  and  $\lambda_2$  of this equation are the *eigenvalues* of the system

$$\lambda_{1} = \left(\frac{3}{2} - \frac{1}{2}\sqrt{3}\right)\frac{k}{m} = 0.634\frac{k}{m}$$
$$\lambda_{2} = \left(\frac{3}{2} + \frac{1}{2}\sqrt{3}\right)\frac{k}{m} = 2.366\frac{k}{m}$$

and the natural frequencies of the system are

$$\omega_1 = \lambda_1^{1/2} = \sqrt{0.634 \frac{k}{m}} , \qquad \omega_2 = \lambda_2^{1/2} \sqrt{2.366 \frac{k}{m}}$$

From either of equations (3) or (4)

$$\frac{A_1}{A_2} = \frac{k}{2k - \omega^2 m}$$

substituting  $\omega^2 = \omega_1^2 = 0.634 \frac{k}{m}$ 

$$\binom{A_1}{A_2}^{(1)} = \frac{k}{2k - \omega_1^2 m} = \frac{1}{2 - 0.634} = 0.731$$

Similarly, substituting  $\omega^2 = \omega_2^2 = 2.366 \frac{k}{m}$ 

$$\left(\frac{A_1}{A_2}\right)^{(2)} = \frac{k}{2k - \omega_2^2 m} = \frac{1}{2 - 2.366} = -2.73$$

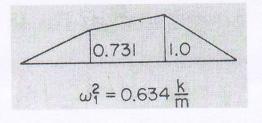
If one of the amplitudes is chosen equal to 1 or any number, we say that the amplitude ration is *normalized* to that number. The normalized amplitude ratio is then called the **normal mode** and is designated by  $\phi_i(x)$ .

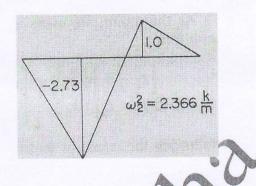
The two normal modes of our example are

$$\phi_1(x) = \begin{cases} 0.731\\ 1.00 \end{cases}$$
,  $\phi_2(x) = \begin{cases} -2.73\\ 1.00 \end{cases}$ 

# Vibration - Fourth Class / University of Tikrit (22-23)

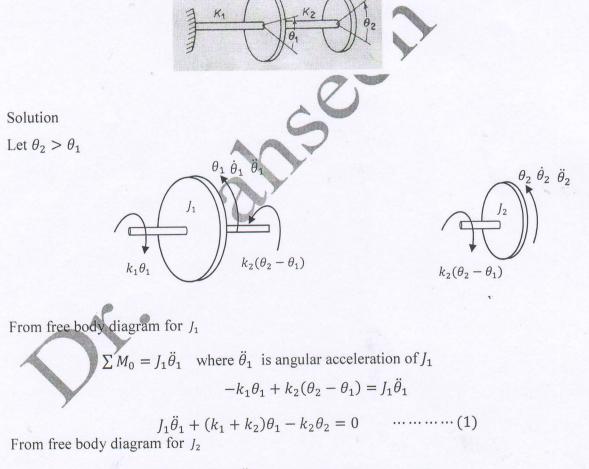
**Mechanical Engineering** 





### Example

Find the mass matrix and stiffness matrix of the system shown in Figure where  $J_1$  and  $J_2$  are the mass moment of inertia of two disks.



$$\sum M_0 = J_2 \ddot{\theta}_2$$
 where  $\ddot{\theta}_2$  is angular acceleration of  $J_2$   
 $-k_2(\theta_2 - \theta_1) = J_2 \ddot{\theta}_2$   
 $J_2 \ddot{\theta}_2 + k_2 \theta_2 - k_1 \theta_1 = 0$  .....(2)

# Vibration – Fourth Class / University of Tikrit (22-23)

### **Mechanical Engineering**

Equations (1) and (2) are equations of motion, Equations (1) and (2) have the matrix form

$$\begin{bmatrix} J_1 & 0\\ 0 & J_2 \end{bmatrix} \begin{pmatrix} \ddot{\theta}_1\\ \ddot{\theta}_2 \end{pmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2\\ -k_1 & k_2 \end{bmatrix} \begin{pmatrix} \theta_1\\ \theta_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

In solving vibration problems, matrix

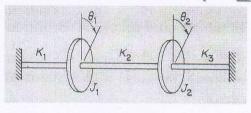
$$M\theta + K\theta = 0$$

where  $\mathbf{\theta} = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}^T$  is two dimensional displacement vector

$$\boldsymbol{M} = \begin{bmatrix} J_1 & 0\\ 0 & J_2 \end{bmatrix}, \qquad \boldsymbol{K} = \begin{bmatrix} k_1 + k_2 & -k_2\\ -k_1 & k_2 \end{bmatrix}$$

H.W

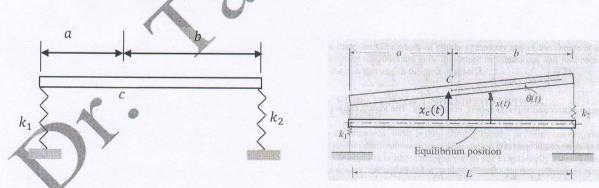
Find the mass matrix and stiffness matrix of the system shown in Figure





### Example

Another two-degree-of-freedom system of interest of a slab supported on two springs as shown in Figure (simplified model of the automobile)



### Solution

Since the slab has general motion (translating + rotation)

