Mechanical Engineering

Free Vibration of an Un-damped Torsional System

 $k_t = \frac{GI_p}{I}$: - torsional stiffness of shaft

where

G: - shear modulus of rigidity N/m^2

l: - length(m)

d: - diameter (m)

 I_p : -polar moment of inertia of the circular cross-sectional area

$$I_p = \frac{\pi d^4}{32} \quad (m^4)$$

Applying Newton's second law $\sum M_C = J\ddot{\theta}$

 $-k_t\theta = I\ddot{\theta}$

J: - mass moment of inertia $J\ddot{\theta} + k_t\theta$

 $k_t \theta$

Ö

$$\ddot{\theta} + \frac{k_t}{I}\theta = 0$$
 (Equation of Motion)

or

$$\omega_n = \sqrt{\frac{k_t}{J}}$$
 (Natural Frequency)

Solution of Equation of Motion

Equation of motion

$$\ddot{x} + \frac{k}{m}x = 0$$
$$\ddot{\theta} + \frac{k_t}{m}\theta = 0$$

(Equation of Motion for Translation Motion)

(Equation of Motion for Rotational Motion)

is second order differential equation which has the solution in the following forms

 $\ddot{x} + \omega_n^2 x = 0$

 $\dot{\theta} + \omega_n^2 \theta = 0$

Form 1

where C and ϕ are constants

C - amplitude

 ϕ :- phase angle

to find the constants we need the following initial conditions

 $x(0) = x_0$:- initial displacement and

 $\dot{x}(0) = v_0$:- initial velocity

from Equation (2), let $t = 0 \implies x(t = 0) = x_0$

Mechanical Engineering

$$x_0 = C\cos(\phi) \qquad \qquad C = \frac{x_0}{\cos(\phi)}$$

 $\operatorname{let} t = 0 \qquad \dot{x}(t=0) = v_0$

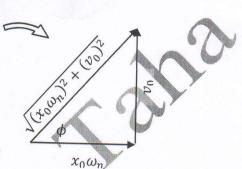
from Equation (1) $\dot{x}(t) = -C \omega_n \sin(\omega_n t - \phi)$

or

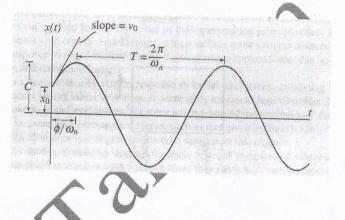
$$v_0 = \frac{x_0}{\cos(\phi)} \omega_n \sin(\phi) = x_0 \omega_n \tan \phi$$
$$\tan \phi = \frac{v_0}{x_0 \omega_n} \qquad \phi = \tan^{-1} \frac{v_0}{x_0 \omega_n}$$

$$C = \frac{x_0}{\cos(\phi)} = \frac{x_0}{\frac{x_0\omega_n}{\sqrt{(\omega_n x_0)^2 + (v_0)^2}}} =$$

or
$$C = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_n}\right)^2}$$



 $v_0 = C \ \omega_n \sin(\phi)$



Form 2

 $x(t) = C_1 \cos \omega_n t + C_2 \sin \omega_n t \qquad \dots \dots (3)$ from Equation (3), let t = 0 $x_0 = C_1$ $x_0 = C_1$ $x_0 = C_1$ $x_0 = C_1$ $x_0 = C_1 \qquad \dots \qquad x(t = 0) = x_0$ $x_0 = C_2 \omega_n \qquad \qquad x_0 = v_0$ $x_0 = C_2 \omega_n \qquad \qquad C_2 = \frac{v_0}{\omega_n}$ $x(t) = x_0 \cos \omega_n t + \frac{v_0}{\omega_n} \sin \omega_n t$ T: The period of oscillation (sec) = $\frac{2\pi}{\omega_n}$

Note :- the natural frequency can also be defined as the reciprocal of the period

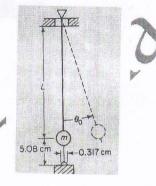
Mechanical Engineering

 $f_n = \frac{1}{T}$ Hz

Example

A chronograph is to be operated by a 2- second pendulum of length L. A platinum wire attached to the bob completes the electric timing circuit through a drop of mercury as it swing through the lowest point. (a)- What should be the length L of the pendulum, (b)-If the platinum wire is in contact with the mercury for 0.3175 cm of the swing what must be the amplitude θ to limit the duration of contact to 0.01 second? (Assume that the velocity during contact is constant and that the amplitude of oscillation is small).

where



0

mg sinio

mg

Solution

but

 $\sum M_o = J_o \ddot{\theta}$

 $-mg \sin \theta \cdot t = mL^2 \ddot{\theta}$ for small angle $\sin \theta = \theta$ $L\ddot{\theta} + g\,\theta = 0$ then the equation of motion is $\ddot{\theta} + \frac{g}{I}\theta = 0$ $\omega_n = \sqrt{\frac{g}{L}}$ where(a) $T = 2 \times 2 = 4 \text{ sec} = \text{The period of oscillation} = \frac{2\pi}{\omega_n} \implies \omega_n = \frac{\pi}{2} (rad/sec)$ the initial velocity is $v = \frac{0.315 \times 10^{-2}}{0.01} = 0.315 \text{ m/s}$ from Equation (a) $\frac{\pi}{2} = \sqrt{\frac{g}{L}} = \sqrt{\frac{9.81}{L}} \implies L = 3.976 m$ $\dot{\theta}_0$ = initial angular velocity = $\frac{v}{r} = \frac{0.315}{3.976 + 0.0508} = 0.07885 \ rad/sec$

 $J_o = mL^2$

For rotational motion the Equation of motion becomes to

$$\theta(t) = C \cos(\omega_n t - \phi) \qquad \dots \dots \dots (b)$$

Mechanical Engineering

$$C = \sqrt{\theta_0^2 + \left(\frac{\dot{\theta}_0}{\omega_n}\right)^2} \qquad \qquad \phi = \tan^{-1} \frac{\dot{\theta}_0}{\theta_0 \omega_n}$$

when $\dot{\theta} = \dot{\theta}_0 = 0.07885 \ rad/sec$

$$C = \sqrt{0 + \left(\frac{0.07885}{\pi/2}\right)^2} = 0.0502 \ rad$$

then Equation (b) becomes to

$$\theta(t) = 0.0502 \sin\left(\frac{\pi}{2}t\right)$$

at maximum amplitude t ≠

c :- damping constant or coefficient of viscous damping

4

 $k\Delta$

m

X

x x

 $\phi = \frac{\pi}{2} = 90^{\circ}$

 $\theta_{max}(t) = 0.0502$

Viscously Damped Single Degree of Freedom

A damping is assumed to have neither mass nor elasticity and damping force exists only if there is relative velocity between the two ends of the damper. The energy or work input to a damper is converted into heat or sound.

111111

Lc

m

 $\theta_0 = 0$

 F_d :- damping force

 $F_d = c\dot{x}$

From Newton's second law

$$\sum \mathbf{F} = m\ddot{x}$$
 where \ddot{x} acceleration of the mass

where

$$-kx - c\dot{x} = m\ddot{x}$$

Note that $k\Delta = w$

where

 $m\ddot{x} + c\dot{x} + kx = 0$

$$\frac{\overline{m}}{m} = \frac{\omega_n^2}{m} \times \frac{2\omega_n}{2\omega_n} = \frac{c}{2\omega_n m} \quad 2\omega_n = 2\zeta \omega_n$$

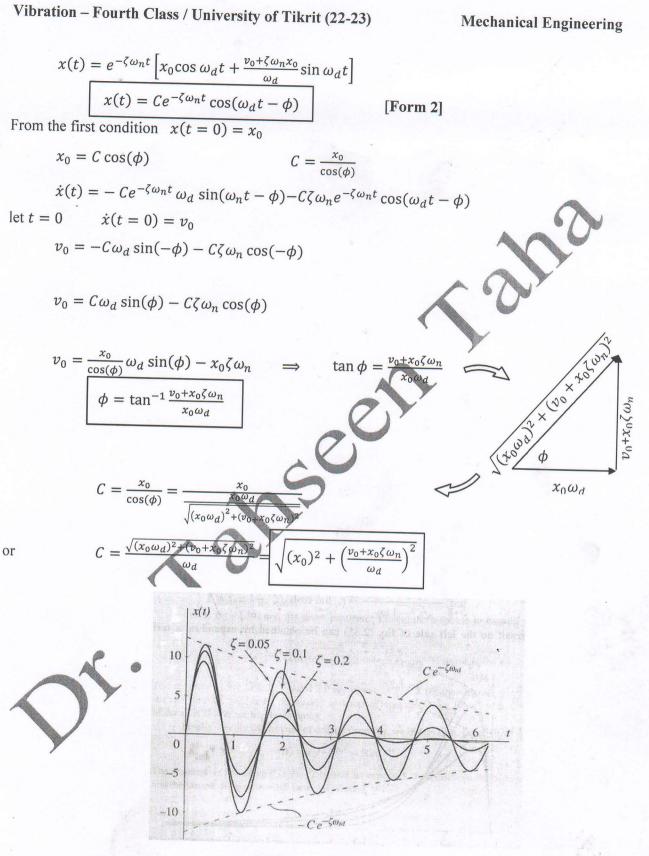
 $\zeta = \frac{c}{2\omega_n m}$ = damping ratio [dimensionless]

Note that damping ratio ζ can be written as $\zeta = \frac{c}{2m\sqrt{\frac{k}{m}}} = \boxed{\frac{c}{2\sqrt{km}}}$

then Equation (1) can be written as

Vibration - Fourth Class / University of Tikrit (22-23) **Mechanical Engineering** $\ddot{x} + 2\zeta \omega_n \dot{x} + \omega_n^2 x = 0$(2) Equation (2) is homogeneous 2-nd order D.E Let the solution $x(t) = e^{\lambda t}$ $\dot{x}(t) = \lambda e^{\lambda t}$ $\ddot{x}(t) = \lambda^2 e^{\lambda t}$ Substituting these into Equation (2) $e^{\lambda t}(\lambda^2 + 2\zeta\omega_n\lambda + \omega_n^2) = 0$ $e^{\lambda t} \neq 0$ then $\lambda^2 + 2\zeta \omega_n \lambda + \omega_n^2 = 0$(3) [characteristic equation] The two roots of (3) are $\lambda_{1,2} = -\zeta \omega_n \pm \sqrt{\zeta^2 - 1} \quad \omega_n$(*) when = 0, the roots λ_1 and λ_2 correspond to the points $i\omega_n$ and $-i\omega_n$, in this the motion represents harmonic motion with natural frequency ω_n . This case was discussed in p (21). 1- Underdamped system $0 < \zeta < 1$ In this case the two roots of Equation (*) are $\lambda_{1,2} = -\zeta \omega_n \pm i \sqrt{1 - \zeta^2} \quad \omega_n = -\zeta \omega_n \pm i \, \omega_d$ $\omega_d = \sqrt{1-\zeta^2} \quad \omega_n = \text{damped natural frequency}$ where $\omega_d < \omega_n$ and $T_d > T$ Note that since $T = \frac{2\pi}{\omega_n}$ and $T_d = \frac{2\pi}{\omega_d}$ Then the general solution of equation (2) becomes to $x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$ $x(t) = C_1 e^{(-\zeta \omega_n + i \omega_d)t} + C_2 e^{(-\zeta \omega_n - i \omega_d)t}$ since $[e^{i \omega_d t} = \cos \omega_d t + i \sin \omega_d t]$ $x(t) = e^{-\zeta \omega_n t} [C_1 \cos \omega_d t + C_2 \sin \omega_d t]$ [Form 1] or where C_1 and C_2 are two constant where can determined from initial conditions $x(t=0) = x_0$ $\dot{x}(t=0)=\dot{x}_0=v_0$ and from first condition $x_0 = C_1$ $x(t) = e^{-\zeta \omega_n t} [x_0 \cos \omega_d t + C_2 \sin \omega_d t] \qquad \dots \dots \dots (4)$ to find C_2 differentiate Equation (4) with respect to time t $\dot{x}(t) = -\zeta \omega_n e^{-\zeta \omega_n t} [x_0 \cos \omega_d t + C_2 \sin \omega_d t] + e^{-\zeta \omega_n t} [-x_0 \omega_d \sin \omega_d t + C_2 \omega_d \cos \omega_d t]$ then from second condition $\dot{x}(t=0) = \dot{x}_0 = v_0$ $v_0 = -\zeta \omega_n x_0 + C_2 \omega_d$ $C_2 = \frac{v_0 + \zeta \omega_n x_0}{\omega_1}$

Equation (4) becomes to



Mechanical Engineering

2- Critical system $\zeta = 1$

In this case the two roots of Equation (*) are

$$\lambda_{1,2} = \lambda = -\omega_n$$

Then the general solution of equation (2) becomes to

$$x(t) = (C_1 + C_2 t)e^{-\omega_n t}$$

where C_1 and C_2 are two constant where can determined from initial conditions

$$x(t=0) = x_0$$
 and $\dot{x}(t=0) = \dot{x}_0 = v_0$

from first condition $x_0 = C_1$

$$x(t) = (x_0 + C_2 t)e^{-\omega_n}$$

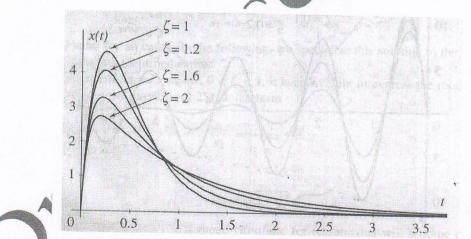
to find C_2 differentiate Equation (5) with respect to time t

$$\dot{x}(t) = -\omega_n x_0 e^{-\omega_n t} + C_2 e^{-\omega_n t} - \omega_n C_2 t e^{-\omega_n t}$$

then from second condition $\dot{x}(t=0) = \dot{x}_0 = v_0$

$$v_0 = -\omega_n x_0 + C_2 \implies C_2 = v_0$$

$$x(t) = [x_0 + (\omega_n x_0 + v_0)t] e^{-\omega_n t}$$



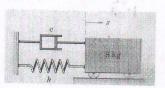
Notes

1- A critically damped system will have the smallest damping required for a periodic motion.

2- The mass returns to the position of rest in the shortest possible time without overshooting.

Example

The 8 kg body is moved 0.2 m to the right of the equilibrium position and released from rest at time t = 0. Determine its displacement at time



Mechanical Engineering

t = 2 sec, if the viscous damping constant c of 20 N. sec/m, and stiffness k of spring is 32 N/m. Solution

Since the system is linear then, $\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{32}{2}} = 2 \ rad/sec$

$$\zeta = \frac{c}{2\omega_n m} = \frac{20}{2 \cdot 2 \cdot 8} = 0.625 \qquad \qquad 0 < \zeta < 1 \quad \text{underdamped}$$

we need $\omega_d = \sqrt{1-\zeta^2} \omega_n = \sqrt{1-(0.625)^2} \cdot 2 = 1.561 \ rad/sec$ Note that ω_d

$$(t) = Ce^{-\zeta \omega_n t} \cos(\omega_d t - \phi)$$

where

$$\phi = \tan^{-1} \frac{v_0 + x_0 \zeta \omega_n}{x_0 \omega_d} \quad \text{and}$$
$$x_0 = +0.2 \text{ m} \quad v_0 = 0$$

$$\phi = \tan^{-1} \frac{0 + 0.2 \cdot 0.625 \cdot 2}{0.2 \cdot 1.561} = 38.68^{\circ}$$

so the general equation of the problem is

$$x(t) = 0.256e^{-1.25t}\cos(1.561t - 38.6t)$$

then, when t = 2 sec

$$x(t) = -0.0162 \eta$$

Example

Derive the equation of motion for the homogeneous circular cylindrical which rolls without shipping. If the cylinder mass is 50 kg, the cylinder radius is 0.5m, the spring constant 75 N/m and the damping coefficient is $10 \text{ N} \cdot \text{sec/m}$, determine

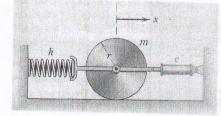
1-The undamped natural frequency (ω_n) .

2- The damped ratio.

3- The damped natural frequency (ω_d).

4- The period of the damped system.

In addition, determine displacement x as a function of time if the cylinder is released from rest at the position x = -0.2m at time t = 0. Solution



= 0.256 m

 $(0+0.2 \cdot 0.625 \cdot 2)$ 1.561

The disk has translation and rotation motions Then from free body diagram

$$\sum F = m a_o = m \ddot{x}$$
$$-kx - c\dot{x} + F_e = m \ddot{x}$$

where F_f is friction force

 $m \ddot{x} + c\dot{x} + kx = F_f$(a)

 $\sum M_o = J_o \ddot{\theta}$ θ :- is angular motion of the disk now, $-F_f r = J_o \ddot{\theta}$

since

SO

If

(

 $x = r\theta \qquad \qquad \ddot{\theta} = \frac{\ddot{x}}{r} \qquad \text{and} \qquad J_o \text{ for disk} = \frac{1}{2}mr^2$ $-F_f r = \frac{1}{2}mr^2 \cdot \frac{\ddot{x}}{r} \qquad \qquad F_f = -\frac{1}{2}m\ddot{x}$

from Equation (a)

$$m \ddot{x} + c\dot{x} + kx = -\frac{1}{2}m\ddot{x}$$
$$\ddot{x} + \frac{2}{3}\frac{c}{m}\dot{x} + \frac{2}{3}\frac{k}{m}x = 0$$
 (Equation of Motion)

comparing with the general form $\ddot{x} + 2\zeta \omega_n \dot{x} + \omega_n^2 x = 0$

$$\phi = \tan^{-1} \frac{\sqrt{2} \cos \omega_n}{x_0 \omega_d}$$
$$x_0 = -0.2 \text{ m} \qquad v_0 = 0$$

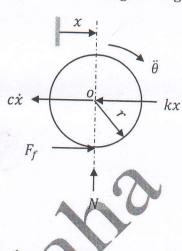
$$C = \sqrt{(x_0)^2 + \left(\frac{v_0 + x_0 \zeta \omega_n}{\omega_d}\right)^2}$$

$$\phi = \tan^{-1} \frac{0 - 0.2 \cdot 0.0667 \cdot 1}{-0.2 \cdot 0.998} = 3.8236^{\circ} \qquad C = \sqrt{(-0.2)^2 + \left(\frac{0 - 0.2 \cdot 0.0667 \cdot 1}{0.998}\right)^2} = 0.2004 \ m$$
$$x(t) = 0.2004 \ e^{-0.0667t} \cos(0.998t - 3.8236^{\circ})$$

and

 $v_0 = 0$

Mechanical Engineering



Mechanical Engineering

Example

A sketch of a gun is shown in Figure. When the gun is fired, highpressure gases accelerate the projectile inside the barrel to a very high velocity. The reaction force pushes the gun barrel in the opposite direction of the projectile. Since it is desirable to bring the gun barrel in the shortest time without oscillation, it is made to translate backwards against a critically damped spring - damper system called recoil mechanism. In particular case, the gun barrel and recoil mechanism have a mass of 500 kg with a recoil spring of stiffness 10000 N/m. The gun recoils 0.4 m upon firing. Find (a) the critical damping coefficient of the damper, (b)- the initial recoil velocity of the gun, and (c)- the time taken by the gun to return to a position 0.1 m from its initial position. Solution



Since the system is critically damped

$$c_c = 2\omega_n m$$
$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{10000}{500}} = 4.4721 \, rad/sec$$

SO

 $c_c = 2 \cdot 500 \cdot 4.4721 = 4472.1$ N. sec/m, for critically damping $x(t) = [x_0 + (\omega_n x_0 + v_0)t] e^{-\omega_n t}$ the initial conditions are $v_0 = ?$

 $0.4 \neq v_0 \cdot 0.2236e^{-4.4721 \cdot 0.2236}$

$$x(t) = v_0 t e^{-\omega_n t}$$

$$\dot{x}(t) = -\omega_n v_0 t e^{-\omega_n t} + v_0 e^{-\omega_n t} \qquad 0 = -\omega_n v_0 t e^{-\omega_n t} + v_0 e^{-\omega_n t}$$

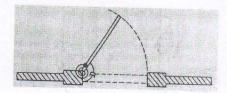
$$\omega_n t = 1 \qquad t = \frac{1}{\omega_n} = \frac{1}{4.4721} = 0.2236 \text{ sec}$$

 $v_0 = 4.863$

but when

HW

The door of a house has a height of 2m, width of 1m, thickness of 50mm, and mass of 50 kg. the door opens against a torsion spring and viscous damper, as shown in Figure. If the spring constant of the torsional spring is 15 N.m/rad, find the damping



x = 0.4m

 $\dot{x} = 0$

Mechanical Engineering

Slider

~~~

-----

constant necessary to provide critical damping in the return swing of the door. If the door is initially opened 75° and released, how long will it take for the door to come to within 5° of closing HW

A slider of mass 1 kg travels in a cylinder with a velocity 80 m/s and engages a spring - damper system shown in Figure. If the stiffness of the spring is k = 20 N/m and the damping constant c of 0.02 N. sec/cm, find the maximum displacement of the slider after engaging the spring and damper. How much time does it take to reach, the maximum displacement?

## Measurement of Damping

A convenient way to determine the a mount of damping present in a system is to measure the rate of decay of free vibration.

> 0 ti

X(t)

XI

x2

12

 $x_1$  :- is the amplitude at time

 $x_2$  :- is the amplitude at time

 $t_2 = t_1 + T$ 

where

the general equation of oscillatory motion is

$$x(t) = Ce^{-\zeta \omega_n t} \cos(\omega_d t - \phi)$$

 $= x_1$ 

when t =

$$1 = Ce^{-\zeta \omega_n t_1} \cos(\omega_d t_1 - \phi)$$

and after one cycle  $t = t_1 + T_d$ x-

X7

 $\ln \frac{x_1}{x_2} = \delta$ 

$$= Ce^{-\zeta \omega_n (t_1 + T_d)} c$$

$$2 \cos(\omega_d(t_1 + T_d) - \phi)$$

where  $\delta$  is logarithmic decrement



Mechanical Engineering

SO

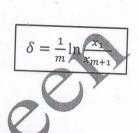
$$\delta = \zeta \omega_n T_d = \zeta \omega_n \frac{2\pi}{\omega_d} \qquad \text{but} \qquad \omega_d = \sqrt{1 - \zeta^2} \omega_n$$
$$\delta = \zeta \omega_n \frac{2\pi}{\sqrt{1 - \zeta^2} \omega_n} = \frac{2\pi\zeta}{\sqrt{1 - \zeta^2}} \qquad \delta^2 = \frac{(2\pi)^2 \zeta^2}{1 - \zeta^2}$$
$$\zeta = \frac{\delta}{\sqrt{(2\pi)^2 + \delta^2}}$$

If  $\zeta$  for the system is small then we can use the amplitudes  $x_1$  and  $x_m$  [ $x_m$  is amplitude after m period], then

$$\frac{x_1}{x_{m+1}} = \frac{x_1}{x_2} \cdot \frac{x_2}{x_3} \cdot \frac{x_3}{x_4} \cdot \frac{x_4}{x_5} \dots \frac{x_m}{x_{m+1}}$$
then from Equation (1)  $\frac{x_i}{\sqrt{i+1}} = e^{\zeta \omega_n T_d}$ 

$$\frac{x_1}{x_{m+1}} = \left(e^{\zeta \omega_n T_d}\right)^m = e^{m\zeta \omega_n T_d}$$

$$\ln \frac{x_1}{x_{m+1}} = m \zeta \underline{\omega_n T_d} = m\delta$$



where m is integer

### Example

An under damped shock absorber is to be designed for a vehicle. The initial amplitude is to be reduced to one – fourth in the first half cycle. The mass of the vehicle s 500 kg and the damping period of vibration is to be 1 sec. find the necessary stiffness and damping constants of the shock absorber. Also, if the clearance is 250 mm, find the minimum initial velocity that result in bottoming of the system.

$$\begin{aligned} x_{1.5} &= \frac{x_1}{4} & x_2 = \frac{x_{1.5}}{4} & \text{then} & \frac{x_1}{x_2} = 16 \\ \delta &= \ln(16) = 2.7726 \\ \zeta &= \frac{\delta}{\sqrt{(2\pi)^2 + \delta^2}} = 0.4037 \\ T_0 &= 1 \sec = \frac{2\pi}{\omega_d} \implies \omega_d = 2\pi = \sqrt{1 - \zeta^2} \, \omega_n \\ 2\pi &= \sqrt{1 - (0.4037)^2} \, \omega_n \implies \omega_n = 6.87 \ rad/sec \\ \zeta &= \frac{c}{c_c} = \frac{c}{2m\omega_n} & c = 2\zeta m\omega_n = 2 \cdot 500 \cdot 0.4037 \cdot 6.87 = 2772.5 \ \text{N. sec/m}, \\ x(t) &= Ce^{-\zeta \omega_n t} \cos(\omega_d t - \phi) \qquad \dots \dots \dots (a) \end{aligned}$$

Mechanical Engineering

where 
$$\phi = \tan^{-1} \frac{v_0 + x_0 \zeta \omega_n}{x_0 \omega_d}$$
 and  $C = \sqrt{(x_0)^2 + (\frac{v_0 + x_0 \zeta \omega_n}{\omega_d})^2}$   
when,  $t = 0$ ,  $x_0 = 0$  but  $v_0 \neq 0$   
 $\phi = \tan^{-1}\infty \implies \phi = 90^\circ$   $C = \frac{v_0}{\omega_d}$   
 $\dot{x}(t) = -\zeta \omega_n C e^{-\zeta \omega_n t} \cos(\omega_d t - \phi) - C \omega_d e^{-\zeta \omega_n t} \sin(\omega_d t - \phi)$   
 $0 = -\zeta \omega_n C e^{-\zeta \omega_n t} \cos(\omega_d t - \phi) - C \omega_d e^{-\zeta \omega_n t} \sin(\omega_d t - \phi)$   
 $\zeta \cos(\omega_d t - \phi) = -\sqrt{1 - \zeta^2} \sin(\omega_d t - \phi)$   
 $\tan(\omega_d t - \phi) = -\frac{\zeta}{\sqrt{1 - \zeta^2}} = -\frac{0.4037}{\sqrt{1 - (0.4037)^2}} = -0.44125$   
 $\omega_d t - \phi = \tan^{-1}(-0.44125)$   
 $\omega_d t - \frac{\pi}{2} = -0.4155$   $\omega_d t = \frac{\pi}{2} - 0.4155 = 0.1545$   
 $t = \frac{1.1545}{2\pi} = 0.184$  sec  
from Equation (a) when  $t = 0.184$   $x(t = 0.184) = 0.25m$   
 $0.25 = C e^{-(0.4037 + 6.87 + 0.184)} \cos(2\pi 0.184 - \frac{\pi}{2})$   
 $0.25 = C (0.6) 0.915$   $C = 0.455$   
 $x(t) = 0.455e^{-2.77t} \cos(2\pi t - \frac{\pi}{2}) = 0.455.2\pi e^{-2.77t} \sin(2\pi t - \frac{\pi}{2})$   
now  $\dot{x}(t = 0) = 0.455 \cdot 2$ 

#### H.W1

A vibrating system consists of a mass of 4.534 kg, a spring of stiffness 35.0 N/cm, and a dashpot with a damping coefficient of 0.1243 N.s/cm. Find (a) the damping factor, (b) the logarithmic decrement, and (c) the ratio of any two consecutive amplitudes.

#### H.W2

A vibrating system consisting of a mass of 2.267 kg and a spring of stiffness 17.5 N/cm is viscously damped such that the ratio of any two consecutive amplitudes is 1.00 and 0.98. Determine (a) the natural frequency of the damped system, (b) the logarithmic decrement, (c) the damping factor, and (d) the damping coefficient.