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Assumptions of Thermodynamic Cycles Analysis 

     Air-standard analysis is a simplification of the real cycle that includes 

the following assumptions: 
 

 1) Working fluid consists of fixed amount of air (ideal gas)  
 

 2) Combustion process represented by heat transfer into and out of the 

 cylinder from an external source. 
  

 3) Differences between intake and exhaust processes not considered 

 (i.e. no pumping work)  
 

 4) Engine friction and heat losses not considered 
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Carnot’s Theoretical Model for Steam Engine 
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SI Engine Cycle vs Air Standard Otto Cycle 
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1. Process 1 2   Isentropic compression 

2. Process 2  3  Constant volume heat addition 

3. Process 3  4  Isentropic expansion 

4. Process 4  1  Constant volume heat rejection 
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Air-Standard Otto cycle 
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First Law Analysis of Otto Cycle 

 

 

 

  

 

 

12 Isentropic Compression 
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First Law Analysis of Otto Cycle 

 

 

 

  

 

 

23 Constant Volume Heat Addition 
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3  4 Isentropic Expansion 
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First Law Analysis of Otto Cycle 



  

            

            

 

  

  

4  1 Constant Volume Heat Removal 
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First Law Analysis of Otto Cycle 
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Net cycle work: 
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• For a cold air-standard analysis the specific heats are assumed to be 

constant evaluated at ambient temperature values (k = cp/cv = 1.4).  

 

• For the two isentropic processes in the cycle, assuming ideal gas with 

constant specific heat using        yields: 

Cold Air-Standard Analysis 
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Effect of Specific Heat Ratio 
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Cylinder temperatures vary between 20K and 2000K where 1.2 < k < 1.4 



Thermodynamic Cycles for CI engines 

• In early CI engines the fuel was injected when the piston reached 

  TDC and thus combustion lasted well into the expansion stroke. 

 

• In modern engines the fuel is injected before TDC (about 20o) 

• The combustion process in the early CI engines is best approximated 

   by a constant pressure heat addition process  Diesel Cycle 

 

• The combustion process in the modern CI engines is best approximated 

  by a combination of constant volume & constant pressure  Dual Cycle 

Fuel injection starts 
Fuel injection starts 

Early CI engine Modern CI engine 



Early CI Engine Cycle vs Diesel Cycle 
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 Process 1 2   Isentropic compression 

 Process 2  3  Constant pressure heat addition 

 Process 3  4  Isentropic expansion 

 Process 4  1  Constant volume heat rejection 

Air-Standard Diesel Cycle 
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First Law Analysis of Diesel Cycle 

Equations for processes 12, 41 are the 

same as those presented for the Otto cycle 
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Note that  v4=v1 , so:   
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For cold air-standard the above reduces to: 
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Note the term in the square bracket is always larger than one so 

for the same compression ratio, r,  the Diesel cycle has a lower 
thermal efficiency than the Otto cycle 

 

When rc (=v3/v2)1 the Diesel cycle efficiency approaches the  

efficiency of the Otto cycle 



Modern CI Engines 

    12 < r < 23  

The cut-off ratio is not a natural choice for the independent variable 

A more suitable parameter is the heat input, the two are related by: 
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Modern CI Engine Cycle vs Dual Cycle 
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 Process 1  2  Isentropic compression 

 Process 2  X  Constant volume heat addition 

 Process X  3  Constant pressure heat addition 

 Process 3  4  Isentropic expansion 

 Process 4  1  Constant volume heat rejection 

Dual Cycle 
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Thermal Efficiency 
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The use of the Dual cycle requires information about either: 

i) the fractions of constant volume and constant pressure heat 

addition  

     (common assumption is to equally split the heat addition), or 

ii) maximum pressure p3.  

iii) Transformation of rc and  into more natural variables yields 
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For the same inlet conditions p1, V1 and the same compression ratio: 

DieselDualOtto  

For the same inlet conditions p1, v1 and the same peak pressure p3  

(actual design limitation in engines): 

ottoDualDiesel  

Comparison between Otto, Diesel and Dual cycles 



For the same compression ratio 

& p1, V1: 

For the same peak pressure p3 

& p1, V1 : 
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Type of Fuel Vs Combustion Strategy 

• Highly volatile with High self Ignition Temperature: Spark Ignition. 

Ignition after thorough mixing of air and fuel. 

 

• Less Volatile with low self Ignition Temperature: Compression 

Ignition , Almost simultaneous mixing & Ignition. 


