مُرَّرُرُولِيسم الرباعي: مرالرقم السري:

جامعة تكريت كلية المندسة قسم المندسة الميكانيكية

عالم الم المالة على المالة الم

الرقم السري:

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2024/2023 (الدكتوراه) يوم الثلاثاء المصادف 2023/6/20

<u>ملاحظات:</u>

- 1 ضع دائرة حول الاجابة الصحيحة للأسئلة الاختيارية.
 - 2- جميع الاسئلة لها نفس الدرجة.
 - 3- عدد الأسئلة 65 سؤالا.

لجنة الدر اسات العليا قسم الهندسة الميكانيكية

جامعة تكريت

القسم: الميكانيك الدراسة: الدكتوراه التاريخ: 2023/6/20

كلية الهندسة

		الإجابة				الإجابة	
اسم وتوقيع المصحح	الدرجة		رقم السؤال	اسم وتوقيع المصحح	الدرجة	ر توشر بصح او خطأ)	رقم السؤال
			34			,	1
			35				2
			36				3
			37				4
			38				5
			39				6
			40				7
			41				8
			42				9
			43				10
			44				11
			45				12
			46				13
			47				14
			48				15
			49				16
			50				17
			51				18
			52				19
			53				20
			54				21
			55				22
			56				23
			57				24
			58				25
			59				26
			60				27
			61				28
			62				29
			63				30
			64				31
			65				32
			66				33
قيع المدقق	اسم وتو			كتابة	رقماً	7 9 . ***	
						النهائية	الدرجه

جامعة تكربت

القسم: الميكانيك الدراسة: الدكتوراه التاريخ: 2023/6/20

لية الهندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2023-2024

1- If $t=m^2$ then the transformation the integral $\int_0^\infty e^{-t}t^{x-1}dt$ from t domain the m domain yields

$$(a) - 2 \int_0^\infty e^{-m} m^{2x-1} dm$$

$$(b)$$
 - $2\int_0^\infty e^{-m^2} m^{2x-1} dm$

$$(c) - 2 \int_0^\infty e^{-m} m^{x-1} dm$$

$$(d)$$
 - $2\int_0^\infty e^{-m^2} m^{x-1} dm$

2- The functions in the interval [a, b]of an **orthonormal** set $\{\phi_n(x)\}$ have the property that

$$(a) - \int_a^b \phi_n(x) \, \phi_n(x) dx = \sqrt{2} \quad , \qquad \int_a^b \phi_n(x) \, \phi_m(x) dx = 0$$

$$(b) - \int_a^b \phi_n(x) \, \phi_n(x) dx = 1 \quad , \qquad \int_a^b \phi_n(x) \, \phi_m(x) dx = \sqrt{2}$$

$$(c) - \int_a^b \phi_n(x) \, \phi_n(x) dx = 0 \quad , \qquad \int_a^b \phi_n(x) \, \phi_m(x) dx = 1$$

$$(d) - \int_a^b \phi_n(x) \,\phi_n(x) dx = 1 \quad , \qquad \int_a^b \phi_n(x) \,\phi_m(x) dx = 0$$

3- The differential equation $y'' + \lambda y = 0$ satisfies the boundary conditions y(0) = 0 and $y(\pi) - y'(\pi) = 0$ if

$$(a) - \lambda = 0$$

$$(b)$$
 – λ < 0

$$(c)$$
 – $\lambda > 0$

(d) — No one above

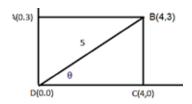
4- Transform the counter of this summation $\sum_{m=n}^{m=\infty} \frac{(-1)^m x^{2m-n}}{2^{2m-n} m! (m-n)!}$ from m to k so that $\sum_{k=0}^{\infty}$

جامعة تكربت

ولية المندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2024-2023

5- Prove that


$$J_{v-1}(x) = \frac{2v}{x} J_v(x) - J_{v+1}(x)$$

Where J_{ν} is Bessel Function of first kind of order ν

Hint

$$\frac{d}{dx}[x^{\nu}J_{\nu}(x)] = x^{\nu}J_{\nu-1}(x) \cdots \cdots (1) ; \quad \frac{d}{dx}[x^{-\nu}J_{\nu}(x)] = -x^{-\nu}J_{\nu+1}(x) \cdots \cdots (2)$$

- 6- For a linear elastic material that is completely incompressible, the Poisson's ratio is-----
 - (a) 0.35
 - (b) 0.5
 - (c) 0
 - (d) infinity
- 7- Plane strain is being applied to a rectangular section of the solid. The original rectangle has four corners at (0,0), (4,0), (4,3), and (0,3). Both the x- and y-axis strains are $\varepsilon_{xx} = 0.001$ and $\varepsilon_{yy} = 0.002$. For a distorted and stretched diagonal of length 0.014, the value of shear strain γxy , rounded to three decimal places, is given in ----- units

جامعة تكربت

القسم: الميكانيك الدراسة: الدكتوراه التاريخ: 2023/6/20

لية الهندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2024-2023

- 8- At a point in a critical section of a machine component, the principal stresses are σ_1 = 60 MPa, σ_2 = 5 MPa, and σ_3 = -40 MPa. The tensile yield strength of the component's material is σ_y = 200 MPa. According to the theory of maximal shear tension, the safety factor is -------
 - (a) 1.5
 - (b) 3
 - (c) 2.25
 - (d) 2
- 9- When a cube of length L is subjected to equal compressive stresses in the X, Y, and Z directions, what is the volume change as a function of Young's modulus and Poisson's ratio?

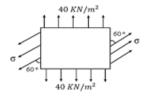
10- An aluminum alloy has a yield stress of 50 MPa in uniaxial tension. If the material is subjected to stresses $\sigma 1 = 25$ MPa, $\sigma 2 = 15$ MPa, and $\sigma 3 = -26$ MPa in a three-dimensional state of stress, will it yield according to the distortion energy criterion? Provide an explanation for your answer.

الدراسة: الدكتوراه التاريخ: 2023/6/20

القسم: الميكانيك

كلية الهندسة

- 11-Which of the following is the resultant diameter of a solid steel spheroid when exposed to a hydrostatic pressure of $5 * 10^9$ Pas? The spheroid has a diameter of 20 mm at first. The Young's modulus is 200 GPas, and the Poisson's ratio is 0.30.
 - (a) 17.89 mm
 - (*b*) 18.76 mm
 - (c) 19.80 mm
 - (d) 16.79 mm
- 12- In the field of elasticity, the connection between Young's modulus (E), shear modulus (G), and bulk modulus (K) is -----
 - $(a) E = \frac{9KG}{(K+3G)}$
 - $(b) E = \frac{9KG}{(3 K+G)}$
 - $(c) \qquad \qquad E = \frac{3KG}{(9 \text{ K+G})}$
 - $(d) E = \frac{3KG}{(K+9G)}$


- 14- The strain components at a point are given $\varepsilon_x = 0.01$, $\varepsilon_y = -0.02$, $\varepsilon_z = 0.03$, $\gamma_{xy} = 0.015$, $\gamma_{yz} = 0.02$, $\gamma_{xz} = -0.01$. The normal strain on the octahedral plane is ------
 - (a) 0.102
 - (b) 0.015
 - (c) 0.017
 - (d) 0.011

جامعة تكربت

كلية الهندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2024-2023

15- At a specific point in a strained material, when exposed to the stresses depicted in the figure, the major principal stress σ_1 has a value of 97.23 kN/m².

The stress value, denoted by σ , is ----- expressed in units of kN/m².

- $(a) 78 \text{ kN/m}^2$
- $(b) 18 \text{ kN/m}^2$
- (c) 80 kN/m^2
- $(d) 92 \text{ kN/m}^2$
- 16- If the equations of motion of a two degree of freedom system are given by

$$\begin{bmatrix} 3m & 0 \\ 0 & 2m \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} 3k & -k \\ -k & 2k \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$

Find the natural frequencies of the system

الدراسة: الدكتوراه

القسم: الميكانيك

التاريخ: 2023/6/20

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2024-2023 17- If the mass and stiffness matrices for the two-degree-of-freedom system are given by

$$\mathbf{M} = m \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad \mathbf{K} = k \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$$

and corresponding modal matrix are

$$\phi_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 , $\phi_2 = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$

Then the orthonormal modes are

$$(a) - \frac{1}{\sqrt{m}} \begin{bmatrix} \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}} \end{bmatrix} , \frac{1}{\sqrt{m}} \begin{bmatrix} \sqrt{\frac{2}{3}} \\ -\sqrt{\frac{2}{3}} \end{bmatrix}$$

$$(b) - \frac{1}{\sqrt{m}} \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix} \quad , \qquad \frac{1}{\sqrt{m}} \begin{bmatrix} \sqrt{\frac{2}{3}} \\ -\sqrt{\frac{2}{12}} \end{bmatrix}$$

$$(c) - \frac{1}{\sqrt{m}} \begin{bmatrix} \sqrt{3} \\ \sqrt{3} \end{bmatrix} \quad , \qquad \frac{1}{\sqrt{m}} \begin{bmatrix} \sqrt{\frac{3}{2}} \\ -\sqrt{\frac{3}{1}} \end{bmatrix}$$

$$(d)$$
 - $\frac{1}{\sqrt{m}}\begin{bmatrix}1\\1\end{bmatrix}$, $\frac{1}{\sqrt{m}}\begin{bmatrix}2\\-2\\5\end{bmatrix}$

18- If the mass and stiffness matrices for the two-degree-of-freedom system are given by

$$\mathbf{M} = m \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \,, \quad \ \mathbf{K} = k \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix}$$

and corresponding orthonormal modal matrix are

$$\phi_1 = \frac{1}{\sqrt{m}} \begin{bmatrix} 0.4082\\ 0.8165 \end{bmatrix}$$
 , $\phi_2 = \frac{1}{\sqrt{m}} \begin{bmatrix} -0.5774\\ 0.5774 \end{bmatrix}$

Then the natural frequencies of the system are

$$(a)$$
 - $\omega_1 = 0.909 \sqrt{\frac{k}{m}}$, $\omega_2 = 2.35 \sqrt{\frac{k}{m}}$

$$(b)$$
 - $\omega_1 = 1.00 \sqrt{\frac{k}{m}}$, $\omega_2 = 4.21 \sqrt{\frac{k}{m}}$

$$(c) - \omega_1 = 0.707 \sqrt{\frac{k}{m}} , \quad \omega_2 = 1.414 \sqrt{\frac{k}{m}}$$

$$(d) - \omega_1 = 1.10 \sqrt{\frac{k}{m}} \qquad , \quad \omega_2 = 3.20 \sqrt{\frac{k}{m}}$$

جامعة تكريت

كلية الهندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2023-2024

19- If the mass and stiffness matrices for the two-degree-of-freedom system are given by

$$\mathbf{M} = m \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad \mathbf{K} = k \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$$

and corresponding orthogonal modal matrix are

$$\phi_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 , $\phi_2 = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$

Check the orthognality condition of normal modes with respect to stiffness matrix

20- If $k_1 = k_2 = k_3 = k$, then the stiffness matrix of the system shown in Figure (1) is

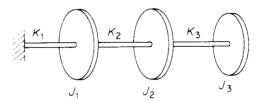


Figure (1)

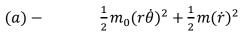
$$(a) - k \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$(b) - k \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$(c) - k \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$(d) - k \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

جامعة تكريت


كارة المندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2024-2023

21- The rod of mass m which carries the collar of mass m_0 shown in Figure (2) rotates with angular velocity $\dot{\theta}$. If the spring has unstretched length r_0 then the total kinetic energy of the system at the position shown is [neglect the friction between the rod and collar]

$$(b) - \frac{1}{2}m_0(r\dot{\theta})^2 + \frac{1}{2}m_0(\dot{r})^2 + \frac{1}{2}(m\frac{l^2}{3})(\dot{\theta})^2$$

(c) -
$$m_0(\dot{r})^2 + \frac{1}{2}(m\frac{l^2}{3})(\dot{r})^2$$

$$(d) - \frac{1}{2}m_0(r\dot{\theta})^2 + \frac{1}{2}(m\frac{l^2}{3})(\dot{\theta})^2$$

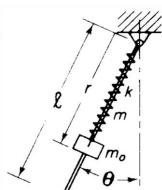


Figure (2)

22- The system in Figure (3) of two rods of mass m for each. At the position shown the total potential energy of the system is

$$(a) - \frac{1}{2}k(\frac{l}{2}\theta_1)^2$$

$$(b) - \frac{1}{2}k(\frac{l}{2}\theta_1)^2 + mg\frac{l}{2}(1-\cos\theta_1) + mg[l(1-\cos\theta_1) + \frac{l}{2}(1-\cos\theta_2)]$$

$$(c) - \frac{1}{2}k(\frac{l}{2}\theta_1)^2 + +mg[l(1-\cos\theta_1) + \frac{l}{2}(1-\cos\theta_2)]$$

$$(d) - \frac{1}{2}k(\frac{l}{2}\theta_1)^2 + mg\frac{l}{2}(1-\cos\theta_1) + mg[l(1-\cos\theta_1)]$$

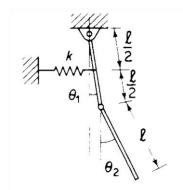


Figure (3)

23- Consider the lateral deflection of beam shown in Figure (4) is y(x). Determine the total potential energy of the beam

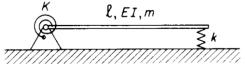


Figure (4)

جامعة تكريت

كلية الهندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2023-2024

24- A uniform homogenous beam is fixed at point x = 0 and free at point x = L, then the four boundary conditions of the beam are

$$(a) - y(x,t)\big|_{x=0} = 0 , \quad \frac{\partial y(x,t)}{\partial x}\Big|_{x=0} = 0 , \quad \frac{\partial^2 y(x,t)}{\partial x^2}\Big|_{x=L} = 0, \quad \frac{\partial^3 y(x,t)}{\partial x^3}\Big|_{x=L} = 0$$

$$(b) - y(x,t)\big|_{x=0} = 0 \ , \quad \frac{\partial y(x,t)}{\partial x}\Big|_{x=0} = 0 \ , \qquad \frac{\partial^2 y(x,t)}{\partial x^2}\Big|_{x=L} \neq 0 \ , \qquad \frac{\partial^3 y(x,t)}{\partial x^3}\Big|_{x=L} = 0$$

$$(c) - y(x,t)\big|_{x=0} = 0 \ , \quad \frac{\partial y(x,t)}{\partial x}\bigg|_{x=0} = 0 \ , \qquad \frac{\partial^2 y(x,t)}{\partial x^2}\bigg|_{x=L} = 0 \ , \qquad \frac{\partial^3 y(x,t)}{\partial x^3}\bigg|_{x=L} \neq 0$$

$$(d) - y(x,t)\big|_{x=0} \neq 0 \ , \quad \frac{\partial y(x,t)}{\partial x}\Big|_{x=0} = 0 \ , \qquad \frac{\partial^2 y(x,t)}{\partial x^2}\Big|_{x=L} \neq 0 \ , \qquad \frac{\partial^3 y(x,t)}{\partial x^3}\Big|_{x=L} = 0$$

25- If a single degree of freedom system is excited by impulsive force at t = 0. Then the initial conditions of the system are

$$(a) - y_0 = \frac{1}{k} \qquad \dot{y}_0 = 0$$

$$(b) - \qquad \qquad y_0 = 0 \qquad \qquad \dot{y}_0 = \frac{1}{m}$$

$$(c) - y_0 = \frac{1}{m} \qquad \dot{y}_0 = 0$$

$$(d) - y_0 = 0$$
 $\dot{y}_0 = \frac{1}{k}$

26- The tendency of a deformed solid to regain its actual proportions instantly upon unloading known as _____

- (a) Perfectly elastic
- (b) Delayed elasticity
- (c) Inelastic effect
- (d) Plasticity

جامعة تكريت

كلية الهندسة

	ty of materials to develop a characteristic behavior under repeated loading
(a) –	Toughness
(b) –	Resilience
(c) –	Hardness
(d) –	Fatigue
28- Which o	of the following factors affect the mechanical properties of a material under ads?
(a) –	Content of alloys
(b) –	Grain size
(c) –	Imperfection and defects
(d) –	Shape of material
29- What typ	be of wear occurs due to an interaction of surfaces due to adhesion of s?
(a) –	Adhesive wear
(b) –	Abrasive wear
(c) –	Fretting wear
(d) –	Erosive wear
30- Which of	the following impurity in cast iron makes it hard and brittle?
(a) –	Silicon
(b) –	Sulphur
(c) –	Manganese
	Phosphorus

حامعة تكريت

كلية المندسة

- 31- Brass (alloy of copper and zinc) is an example of
 - (a) Substitutional solid solution
 - (b) Interstitial solid solution
 - (c) Intermetallic compounds
 - (d) All of the above
- 32- In process annealing, the hypo eutectoid steel is
- (a) Heated from 30°C to 50°C above the upper critical temperature and then cooled in still air
- (b) Heated from 30°C to 50°C above the upper critical temperature and then cooled suddenly in a suitable cooling medium
- (c) Heated from 30°C to 50°C above the upper critical temperature and then cooled slowly in the furnace
 - (d) Heated below or closes to the lower critical temperature and then cooled slowly
 - 33- Normalising of steel is done to
 - (a) Refine the grain structure
 - (b) Remove strains caused by cold working
 - (c) Remove dislocations caused in the internal structure due to hot working
 - (d) All of the above
 - 34- Which of the following statement is wrong?
 - (a) Steel with 0.8% carbon is wholly pearlite
 - (b) The amount of cementite increases with the increase in percentage of carbon in iron
 - (c) A mechanical mixture of 87% cementite and 13% ferrite is called pearlite
 - (d) The cementite is identified as round particles in the structure

جامعة تكربت

للبة الهندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2024-2023

35-	When steel	containing less	than 0.8%	carbon	is cooled	slowly fr	om ten	nperatures	above
	or within the	e critical range,	it consists	of					

- (a) Mainly ferrite
- (b) Mainly pearlite
- (c) Ferrite and pearlite
- (d) Pearlite and cementite

36- In lost foam casting, the pattern is

- (a) Low alloy steel
- (b) Grey cast iron
- (c) Polystyrene
- (d) –
- 37- Holding furnace of 4 m³ volume and surface ara of 10 m², the modulus is
 - (a) 2.5m
 - (b) 1.5m
 - (c) 0.4m
 - (d) –

38- Zinc flare phenomena means

- (a) zinc melting
- (b) zinc diffusion
- (c) zinc poiling
- (d) –

39-Entrainment mechanism occurs by

- (a) one action
- (b) two action
- (c) without any action
- (d) –

حامعة تكريت

للية الهندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2024-2023

40)_	Dου	ıble	surface	film	is	acted	as	crack	a	lways	
----	----	-----	------	---------	------	----	-------	----	-------	---	-------	--

- (a) true
- (b) false
- (c) some times
- (d) –

41- Wetting process during casting is

- (a) harmful
- (b) useful
- (c) some time useful
- (d) sometime harmful

42- Sound casting means

- (a) sand casting
- (b) bimetal casting
- (c) squeeze casting
- (d) free defects casting

43- Shrinkage porosity comes from

- (a) solid film
- (b) partially molten film
- (c) liquid film
- (d) –

44- Castings without defects can produced when

- (a) rapid flotation of bubbles
- (b) rapid flotation of droplets
- (c) rapid flotation of bifilms
- (d) –

حامعة تكريت

كلية الصندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2023-2024

45- The relationship between density, viscosity, and critical high	45-	The relationship	between	density.	viscosity,	and critical	hight is
--	-----	------------------	---------	----------	------------	--------------	----------

- (a) $V_c = 2(\gamma g/\rho)^{0.25}$
- (b) $V_c = 2(\gamma g/\rho)^{0.5}$
- (c) $V_c = 2(\gamma g/\rho)$
- (d) –

46- At the equilibrium state of any system

- (a) entropy of the system becomes maximum
- (b) entropy of the system becomes minimum
- (c) entropy of the system becomes equal to entropy of the surrounding
- (d) none of the above
- 47- for ideal gas, the less work consuming device occurs during:
 - (a) isentropic process
 - (b) polytropic process
 - (c) isothermal process
 - (d) adiabatic process
- 48-People use electric energy to heat and light homes. What does it indicate?
 - (a) People are destroying energy
 - (b) People are creating energy
 - (c) People are converting energy from more exergy value to less exergy value
 - (d) People are converting energy from less exergy value to more exergy value
- 49- What is the relation between heat rejected by any heat engine (Q_2) and heat rejected by reversible heat engine (Q_{2R}) , when both are operating between same heat source and same heat sink?
 - $(a) Q_2 = Q_{2R}$
 - $(b) Q_2 < Q_{2R}$
 - $(c) Q_2 > Q_{2R}$
 - (d) cannot say

جامعة تكريت

كلية الصندسية

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2023-2024

5	()-	which	combination	of the	following	statements is	correct?
_	•	* * * * * * * * * * * * * * * * * * * *	Commendi	OI CIIC	10110 11115	Detection in	COLLECT.

- (a) A gas cools upon expansion only when its Joule-Thompson coefficient is positive in the temperature range of expansion.
- (b) A liquid expands upon freezing when the slope of its fusion curve on pressure-temperature diagram is negative

(c) –	The work done by closed system in an adiabatic process is a point function. At the equilibrium state of any system, entropy of the system becomes
maxin	num.
51- Co	nsider heat gain is occurring in a system at temperatures T from the surrounding at
tem	perature T_o . If T_o is greater than T , then the exergy of the system will
(a) –	increases
(b) –	decreases
(c) –	remains constant
(d) -	couldn't be predicted
	eat engine is supplied with 100 kJ/s of heat at a fixed temperature of 250°C. if 50 are rejected at 10°C, the cycle is

53-The source of exergy in Turbine is......and in heat exchanger is.....

جامعة تكربت

كلية الهندسة

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2023-2024

54-0.12 m3 of an ideal gas is exposed to reversible polytropic expansion from 300 kPa and 120° C to 100 kPa. 5 kJ of heat are transferred to the gas at constant pressure. The index of expansion (n) between original and final states is...... (Assume γ =1.4 and Cp = 1.0035 kJ/kg.K)

55- In gas cycle, the temperature and pressure related as $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$ forprocess

56- Consider a medium in which the heat conduction equation is given in its simplest form as

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = 0$$

- (a) Cylindrical coordinates one-dimensional unsteady
- (b) Spherical coordinates one-dimensional unsteady
- (c) Both of them
- (d) None of above
- 57- For one-dimension unsteady conduction equation has the following boundary condition. T(0,0)=0, T(L,0)=0 and T(L/2,0)=100

$$(a) - 100e^{-(\frac{\pi n}{L})^2} \alpha t \cos(\frac{n\pi}{L}x)$$

$$(b) - 100e^{-(\frac{\pi n}{L})^2} \alpha t \sin(\frac{n\pi}{L}x)$$

$$(c) - 100e^{-(\frac{\pi n}{L})^2} \alpha t \tan(\frac{n\pi}{L}x)$$

$$(d) - 100e^{-(\frac{\pi n}{L})^2} \alpha x \sin(\frac{n\pi}{x}L)$$

حامعة تكريت

كلية الصندسة

- 58- What happens when the thickness of insulation on a pipe exceeds the critical value?
 - (a) Heat transfer rate increases
 - (b) Heat transfer rate decreases
 - (c) Heat transfer rate remain constant
 - (d) None of the above
- 59- The product of Reynolds number and Prandtl number is known as
 - (a) Stanton number
 - (b) Nusselt number
 - (c) Biot number
 - (d) Peclet number
- 60- The inner and outer surfaces of a 7-m by 4-m brick wall at temperatures of 20°C and 5°C, respectively. The wall thickness 30 cm and its thermal conductivity 0.69 W/m K. The rate of heat transfers through the wall equal to
 - $(a) 0.966 \,\mathrm{kW}$
 - $(b) 0.156 \,\mathrm{kW}$
 - (c) 0.698 kW
 - (d) 1.690 kW
- 61- For a plane wall let the thermal conductivity vary with distance x as $k = k_o(1+\alpha x)$, so that the rate of heat transfer will be

$$(a) - q = \frac{k_0 A \propto (T_1 - T_2)}{lin(1 + \propto L)}$$

(b) -
$$q = \frac{k_0 A(T_1 - T_2)}{lin(1 + \alpha L)}$$

(c) -
$$q = \frac{k_o A(T_1 - T_2)}{lin(1 + k_o L)}$$

$$(d) - q = \frac{A \propto (T_1 - T_2)}{\lim(1 + k_0 L)}$$

الدراسة: الدكتوراه التاريخ: 2023/6/20

حامعة تكريت

كلية الهندسة

- 62- Consider a 1.2-m-high and 2-m-wide glass window whose thickness is 6 mm and thermal conductivity is k = 0.78 W/m $^{\circ}$ C. The indoor is maintained at 24 $^{\circ}$ C while the temperature of the outdoors is -5° C. Take the convection heat transfer coefficients on the inner and outer surfaces of the window to be h1 = 10 W/m 2 $^{\circ}$ C and h2 = 25 W/m 2 $^{\circ}$ C, and disregard any heat transfer by radiation. The steady rate of heat transfers through this glass window are
 - (a) 214 kW
 - $(b) 144 \, \text{kW}$
 - (c) 714 kW
 - (d) 471 kW
- 63- A Cylinder of radius R made of a material having thermal conductivity k is surrounded by a cube having inner hole of radius R and outer dimension of 3 R each. Thermal conductivity of cube is 2K
 - (a) Zero
 - $(b) k(2+\pi/9)$
 - (c) $k(2-\pi/9)$
 - (d) None of the above
- 64- Consider a 0.8-m-high and 1.5 m wide double-pane window consisting of two 4mm thick layers of glass (k =0.78 W/m \cdot °C) separated by a 10-mm-wide stagnant air space (k = 0.026 W/m \cdot °C). Determine the steady rate of heat transfer through this double-pane window and the temperature of its inner surface for a day during which the room is maintained at 20°C while the temperature of the outdoors is 10°C. Take the convection heat transfer coefficients on the inner and outer surfaces of the window to be $h_1 = 10 \text{ W/m}^2$ °C and $h_2 = 40 \text{ W/m}^2 \cdot$ °C, which includes the effects of radiation.

جامعة تكربن

كلية الصندسية

الامتحان التنافسي للتقديم للدراسات العليا للعام الدراسي 2023-2024

65- A hot fluid is being conveyed through a long pipe of 4 cm outer diameter and covered with 2 cm thick insulation. It is proposed to reduce the conduction heat loss to the surroundings to one-third of the present rate by further covering with same insulation. Calculate the additional thickness of insulation.